B www.freenove.com D4 support@freenove.com _

Getting Started

Thank you for choosing Freenove products!
After you download the ZIP file we provide. Unzip it and you will get a folder contains several files and folders.
There are three PDF files:

® Tutorial.pdf
It contains basic operations such as installing system for Raspberry Pi.
The code in this PDFis in C.
® Tutorial GPIOZero.pdf
It contains basic operations such as installing system for Raspberry Pi.
The code in this PDF is in Python.
® Processing.pdf in Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi\Processing
The code in this PDF is in Java.

We recommend you to start with Tutorial.pdf or Tutorial_GPIOZero.pdf first.

If you want to start with Processing.pdf or skip some chapters of Tutorial.pdf, you need to finish necessary
steps in Chapter 7 AD/DA of Tutorial.pdf first.

Remove the Chips

Some chips and modules are inserted into the breadboard to protect their pins.
You need to remove them from breadboard before use. (There is no need to remove GPIO Extension Board.)
Please find a tool (like a little screw driver) to handle them like below:

[Step 1, lift one end slightly.]

[Step 2, lift another end slightly.]

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

n X support@freenove.com www.freenove.com [l

[Step 3, take off the chip with hand.]

Avoid lifting one end with big angle directly.

Get Support and Offer Input

Freenove provides free and responsive product and technical support, including but not limited to:

Product quality issues

Product use and build issues

Questions regarding the technology employed in our products for learning and education
Your input and opinions are always welcome

We also encourage your ideas and suggestions for new products and product improvements

For any of the above, you may send us an email to:

support@freenove.com

Safety and Precautions

Please follow the following safety precautions when using or storing this product:

Keep this product out of the reach of children under 6 years old.

This product should be used only when there is adult supervision present as young children lack
necessary judgment regarding safety and the consequences of product misuse.

This product contains small parts and parts, which are sharp. This product contains electrically conductive
parts. Use caution with electrically conductive parts near or around power supplies, batteries and
powered (live) circuits.

When the product is turned ON, activated or tested, some parts will move or rotate. To avoid injuries to
hands and fingers, keep them away from any moving parts!

It is possible that an improperly connected or shorted circuit may cause overheating. Should this happen,
immediately disconnect the power supply or remove the batteries and do not touch anything until it

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com
mailto:support@freenove.com

B www.freenove.com D4 support@freenove.com _

cools down! When everything is safe and cool, review the product tutorial to identify the cause.

® Only operate the product in accordance with the instructions and guidelines of this tutorial, otherwise
parts may be damaged or you could be injured.

® Store the product in a cool dry place and avoid exposing the product to direct sunlight.

® After use, always turn the power OFF and remove or unplug the batteries before storing.

About Freenove

Freenove provides open source electronic products and services worldwide.

Freenove is committed to assist customers in their education of robotics, programming and electronic circuits
so that they may transform their creative ideas into prototypes and new and innovative products. To this end,
our services include but are not limited to:

Educational and Entertaining Project Kits for Robots, Smart Cars and Drones

Educational Kits to Learn Robotic Software Systems for Arduino, Raspberry Pi and micro: bit
Electronic Component Assortments, Electronic Modules and Specialized Tools

Product Development and Customization Services

You can find more about Freenove and get our latest news and updates through our website:

http://www.freenove.com

Copyright

All the files, materials and instructional guides provided are released under Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. A copy of this license can be found in the folder containing
the Tutorial and software files associated with this product.

This means you can use these resource in your own derived works, in part or completely, but NOT for the
intent or purpose of commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. and cannot be used without

\O/
/ ~.
FREENOVE

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/).

written permission.

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.raspberrypi.org/

support@freenove.com www.freenove.com |l
Contents
L€ AT T T - 1 (=Y o T I
LT 4 oLy d T 04 5 1 o LT I
SAfELY AN PIrECAULIONS. ...ttt ettt ettt ettt e e Il
ADOUL FIEENOVE ...ttt ettt b ettt b b bbb b bbbttt ettt 1l
(Ofo] o) V4T | 1 PN OO 1l
L0 o) = o | ST v
o =T - T PSP 1
L2]] 011 o Y PSP 2
Installing @an OPerating SYSTEIMccco e se s sss e e s s sss e s e e sas e se e s s e s s e s nnesnnsnnes 9
COMIPONENT LISttt ettt b ettt et bbb b bbb e b e b1 oL oL bbb a1 bbb bbb bbb bbb bbbt b bbb bbb 9
OPLIONAI COMPONENTS. ..ottt b bttt bbbttt bbbttt bbbt 11
RASPIEITY PiOS ...t 13
Getting Started With RASPDEITY Pii. ...ttt 19
Chapter 0 Preparationccceiesrsessssesssesssssessssesssessssssssssssssssssssssans 29
LINUX COMIMANG. ...ttt 29
INSTAIT WITINGPI oottt 32
ODbLaiN the ProJECT COUB.......oiiiiiiieieieiiee bbbttt 34
(08 T= T o =T g I I = TSRS 36
PrOJECT 1.1 BIINK covtiititct ittt 36
Freenove Car, Robot and other products for Raspbermy Pi ... 52
Chapter 2 BUttONS & LEDS ... s e sssses e s e ssssss s e s s sse e s e s e ssssae e s s sssssssssssssssnssnens 53
Project 2.1 Push BUtton SWItCh & LEDcoioiiiiie s 53
Project 2.2 MINI Table LAmM ...c.ciccieieiecceeeeeeeeeee et 58
Chapter 3 LED Bar Graphcociciiieneesesesesesesse s sssssssssessessassenens 62
Project 3.1 FIOWING Water LIGNT ..o 62
Chapter 4 ANAlOg & PWM ...t ses s s ss s s sss s s ssssss s sssssssssssssssssnsssssssssansnens 66
Project 4.1 Breathing LED ..ottt 66
ChapPter 5 RGB LEDcocoieiiiicrersesescsessssesss e ssssessssesssassssssssssssssssssssssssnssenens 71
Project 5.1 MUITICOIOIEA LED ..ot 72
(08 g T o 1 4= g G 2 T .72 S 76
PrOJECE 6.1 DOOIOEII ...t 76
PrOJECE 8.2 AlBITON ..ottt 82
(IMpPOortant) Chapter 7 ADC ...t sa e s se s s e e s s e e ae e e e e e s a e ae et e e e naenannas 85
Project 7.1 Read the Voltage Of POENTIOMETET ..o e 85
Chapter 8 POtentiometer & LED ...t e s s s sss e s snesns s s ss s s snesnsssssennennnns 97
PrOJECE 8.1 SOt LIGNT ..ottt 97
Chapter 9 Potentiometer & RGBLED ... sns s ssesse s sse s ssssnssessssssssssssssssssnens 102
Project 9.1 ColOrTUl LIGNT ..ottt 102
Chapter 10 PhotoreSiStor & LEDcociiicrersinesesseses s ssesssses s ssessessssssssssssssssssssssssssssssssessssnsssssssssssssnens 107
Project 10.1 NIGNTLAMID c...cvieieiececececeeeeeee ettt 107
(030 T=T o1 =1 gl I I 0 1= ' V3 o) TSSOSO RSO 113

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com support@freenove.com

ProjeCt 11.1 TREIMOMEBTETooieeeeeeeee ettt ettt ettt n et 113
(08 0 T=] o1 =T g I TV £ 4) OSSPSR 119
PrOJECE 12,1 JOYSTICK ... oottt ettt ettt n ettt 119
Chapter 13 MOLOr & DIIVEN ...ttt se s s s ae s ae e s s ne b e s e e na e e s e s e nnns 125
Project 13.1 Control a DC Motor with @ POtENTIOMELEccoviviiiee e 125
(04 2 T=1 o (=1 g I 0 2 L=)V <1V o o TP 137
Project 14.1.1 REIAY Q& IMOTON ...ttt ettt ettt 137
(04 0 T=T o L= g ST =Y o TP 143
PrOJECE 15.1 SEIVO SWEEP ..ottt ettt ettt 143
(04 2 T=1 o 0=1 g LT3 =Y o] 1= g 1Y/ o 1 o TP 149
Project 16.1 STEPPET IMOTON w.uiuiiiiiiiiieieititet ettt 149
Chapter 17 74HC595 & Bar Graph LED ...t s s s s ssssssssssssssssssssssssssnns 157
Project 17.1 FIOWING Water LIGNT ..o 157
Chapter 18 74HC595 & 7-Segment DiSPlayccccvouererrerrrsermrnserssesessesssesessssesessessssssssssssssssesssssssssssssssnns 163
Project 18.1 7-SegmMENT DiISPIAYcoviiiiiiiiieeee s 163
Project 18.2 4-Digit 7-SegMENT DiISPIAY.......c.oiiiiriiiieeeessee st 168
Chapter 19 74HC595 & LED MatliX..uoueuerseressesersesersnsessssessssesssasnns 177
ProjECT 19.1 LED IMAtIiX...cucuiuiviuieieiteietesetetet et 177
Chapter 20 LCDLB02ccveeerereersesessesssssessssessssssssssssssssesssssssssssssssssssssnssssssassssssssssssssssssssssssnnsssssssssssssasnns 186
Project 20.1 12C LEDLIB02........u ittt 186
Chapter 21 Hygrothermograph DHTLLoiciirrcersessssesessesessessssssessssesssssssssssssssssssssssssssssssssssssnnns 194
Project 21.1 HygrotherMOGraph. ..ottt 194
Chapter 22 MatriX KEYPAd.......cooiiiireeririrereeseese s sesse s s e s s ss s s sas e sssssses e s s sssssssssssssssssssssssssssnna 199
Project 22.1 MatriX KEYPAGc.ciiiieieiiceceeeceeee et 199
Chapter 23 Infrared MOtiON SENSOFccciccerieerresirnirsseses s s sss e s s s s ssssessssessssssnsssssannns 206
Project 23.1 PIR Infrared Motion Detector with LED INdiCatOr..........cccoviiiiiiiiiiiiiiii s 206
Chapter 24 UIrasonic RANGINGc.ccoceerrersirerersessessesessnsas 212
Project 24.1 UIIaSONIC RANGINGi ittt 212
Chapter 25 Attitude SeNSOr MPUBOSO0ccoeereiriereeersensesesesessessesesesses e sssssssssssssssnsssssssessssssssssssssssssnnas 218
Project 25.1 Read @ MPUBO50 SENSOr MOAUIEoiiiiiiiiiie e 218
Chapter 26 Soldering a CirCUit BOArd..........ccoeoeerieierrnrssissssesesse s e ssssssssesssssssssssssessssssssssssssnsssneas 224
Project 26.1 SOIAEMNNG @ BUZZET ..o 224
Project 26.2 Soldering a FIOWINg Water LGtcooiiiiiis e 228
(0 1 0 T=T g 00 0 11 e T] 1= 1 -SSR 234
L AT g LT [P 236

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com DX support@freenove.com

Preface

Raspberry Piis a low cost, credit card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. Itis an incredibly capable little device that enables people of all ages to explore
computing, and to learn how to program in a variety of computer languages like Scratch and Python. It is
capable of doing everything you would expect from a desktop computer, such as browsing the internet,
playing high-definition video content, creating spreadsheets, performing word-processing, and playing video
games. For more information, you can refer to Raspberry Pi official website. For clarification, this tutorial will

also reference Raspberry Pi as RPi, RPI and RasPi.
In this tutorial, most chapters consist of Components List, Component Knowledge, Circuit, and Code. We
provide C code for each project in this tutorial. After completing this tutorial, you can learn Java by reading

Processing.pdf.

This kit does not contain Raspberry and its accessories. You can also use the components and modules in

this kit to create projects of your own design.

Additionally, if you encounter any issues or have questions about this tutorial or the contents of kit, you can
always contact us for free technical support at:

support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
mailto:support@freenove.com

X support@freenove.com www.freenove.com [l

Raspberry Pi

So far, at this writing, Raspberry Pi has advanced to its fifth generation product offering. Version changes are
accompanied by increases in upgrades in hardware and capabillities.

The A type and B type versions of the first generation products have been discontinued due to various reasons.
What is most important is that other popular and currently available versions are consistent in the order and
number of pins and their assigned designation of function, making compatibility of peripheral devices greatly
enhanced between versions.

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins.
Practicality picture of Raspberry Pi 5: Model diagram of Raspberry Pi 5:

Raspbery Pi [5]

@
- EE

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Actual image of Raspberry Pi 4 Model B: CAD image of Raspberry Pi 4 Model B:

‘ NAPAN

“| mamozeoorur | T
s| gwoaxay | €L :

LINY3HL3

BERRERRRRND

i 4 Model B

T 1

111 1
(v43Wv0) ISO

Raspberry Pi 4 Model B
© Raspberry Pi 2018

: (Av1dsia) Isq

LU)

®
&

s
m
g':
8R
=
P
E2
28
4
[
g0

J1PWR N

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com

www.freenove.com [l

Actual image of Raspberry Pi 3 Model B:

AV A A

CAD image of Raspberry Pi 3 Model B:

NN

L3INY3IHLI

)
°
3
<

CSI (CAMERA)

(AV1dSIQ) ISC
LT E

.-—..

=
-
=
~

CSI (CAMERA)
!

SLLLRRREELLE]]

)
°
g:'
o
S«
N
ap
£2
[T}
28
(%)
o
X O

]

hitp Jiwww saspbecry

(AV1dSIa) ISa
NENNRRRNENRNNE

I

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Actual image of Raspberry Pi 1 Model B+: CAD image of Raspberry Pi 1 Model B+:
w 1

Raspberry Pi Model B+ V1.2
wiorg

© Raspberry Pi 2014

hitp Jiwww saspbecry

3 AV14S10 (AV1dSIa) ISa

RENENRNERENREND

Fontl u;'D[L".‘m""mn- .V

3

Raspberry Pi 3 Model A+
© Raspberry Pi 2018

[
£
£

(Avidsia) 1Isa

. ERRNNNNNNNNENE

N LELELELEEALELEL—

10V dhd .
i3, T},

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi 1 Model A+: CAD image of Raspberry Pi 1 Model A+:

3

Raspberry Pi Model A+
© Raspberry Pi 2014

hitp Sl www raspbecryp

AV14S10 SN U\V"IgSIGHSCI

CEYEEEETIIIIIINY - . ERRRRNNNNRNNNNE

2
2]
5]
N
o
g
@
2
o
@
@
o

0187 Id Ausqdsey

ooeveuzeu‘.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins.
Hardware interface diagram of RPi 5 is shown below:

GPIO L e
Connector

USB

PCI Express Connector x4

interfance

[On/Off button

Ethernet
Connector

Power
Connector

MINI HDMI
Connector x2

Camera Display

Connector

Connector

Hardware interface diagram of RPi 4B is shown below:
e

GPIO Ek kKRR KKK E KK EEE R

Connector Raspberry Pi 4 Model B
© Raspberry Pi 2018

Ethernet
Connector

ETHERNET

Display

Connector

USB

Power Connector x4

Connector

Micro HDMI
Connector x2

Audio
Connector

Camera

Connector

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X support@freenove.com www.freenove.com [l

Hardware interface diagram of RPi 3B+/3B/2B/1B+:
e

GPIO :
Raspberry Pi 3 Model Bv1.2
Connector & Raspberry Pi 2015

USB
Connector

Display

Connector

DSI (DISPLAY)

Ethernet
Connector

ETHERNET

Power

(Y¥3UVD) ISD

Connector

HDMI
Connector

Camera

Connector Connector

Hardware interface diagram of RPi 3A+/A+:
e

“““““““““““““

GPIO @ - CcrrrrrrrrrcsEE

Connector Raspberry Pi Model A+
© Raspberry Pi 2014

USB
Connector

Display

I]

DS (DISPLAY)

Connector

(v43Wv0) 1ISO

Power
Connector

Audio
Connector

Camera

Connector Connector

Hardware interface diagram of RPi Zero/Zero W:

GPIO

Connector
Raspberry Pi Zero W

Camera
Connector

Power

HDMI
Connector

Connector Connector

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

D4 support@freenove.com _

. www.freenove.com

Installing an Operating System

The first step is to install an operating system on your RPi so that it can be programmed and function. If you
have installed a system in your RPi, you can start from Chapter O Preparation.

Component List

Required Components

5V/3A Power Adapter. Note: Different versions of
Raspberry Pi have different power requirements
(please check the power requirements for yours
on the chart in the following page.)

Micro SD Card (TF Card) x1, Card Reader x1

SAMSUNG 0’zgsn

DR asoronw

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Power requirements of various versions of Raspberry Pi are shown in following table:

Product Recommended Maximum total USB Typical bare-board
PSU current peripheral current draw active current
capacity consumption

Raspberry Pi 1 Model A 700mA 500mA 200mA

Raspberry Pi 1 Model B 1.2A 500mA 500mA

Raspberry Pi 1 Model A+ 700mA 500mA 180mA

Raspberry Pi 1 Model B+ 1.8A 1.2A 330mA

Raspberry Pi 2 Model B 1.8A 1.2A 350mA

Raspberry Pi 3 Model B 2.5A 1.2A 400mA

Raspberry Pi 3 Model A+ 2.5A Limited by PSU, board, and 350mA

connector ratings only.

Raspberry Pi 3 Model B+ 2.5A 1.2A 500mA

Raspberry Pi 4 Model B 3.0A 1.2A 600mA

Raspberry Pi 5 5.0A 1.6A (600mA if using a 3A 800mA

power supply)
Raspberry Pi 400 3.0A 1.2A 800mA
Raspberry Pi Zero 1.2A Limited by PSU, board, and ~ 100mA

connector ratings only
Raspberry Pi Zero W 1.2A Limited by PSU, board, and 150mA
connector ratings only.
Raspberry Pi Zero 2 W 2A Limited by PSU, board, and | 350mA
connector ratings only.
For more details, please refer to https.//www.raspberrypi.org/help/fags/#powerRegs

In addition, RPi also needs an Ethernet network cable used to connect it to a WAN (Wide Area Network).
The Raspberry Pi 5 provides 1.6A of power to downstream USB peripherals when connected to a power supply

capable of 5A at +5V (25W). When connected to any other compatible power supply, the Raspberry Pi 5
restricts downstream USB devices to 600mA of power.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/help/faqs/#powerReqs

B vwww.freenove.com D4 support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: 1) Using a stand-alone monitor. 2)
Using a remote desktop or laptop computer monitor “sharing” the PC monitor with your RPI.

Required Accessories for Monitor

If you choose to use an independent monitor, mouse and keyboard, you also need the following accessories:
1. A display with a HDMI interface
2. A Mouse and a Keyboard with an USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories:
1. A Mini-HDMI to HDMI Adapter and Cable.

2. A Micro-USB to USB-A Adapter and Cable (Micro USB OTG Cable).
3. A USBHUB.

4. USB to Ethernet Interface or USB Wi-Fi receiver.

For different Raspberry Pi Modules, the optional items may vary slightly but they all aim to convert the

interfaces to Raspberry Pi standards.

Pizero PiA+ 2% piza+ PpiB+/2B -
w 3B/3B+

Monitor Yes (All)
Mouse Yes (All)
Keyboard Yes (All)
Micro-HDMI to
HDMI Adapter & Yes No Yes No No No No No
Cable
Micro-HDMI to
HDMI Adapter & No Yes
Cable

Micro-USB to
USB-A Adapter &

. Yes No Yes No
Cable (Micro USB
OTG Cable)
USB HUB Yes Yes Yes Yes No No No No
USB to Ethernet , Internal
select one from optional ,
Interface Integration)
s . two or select Internal Integration

USB Wi-Fi Receiver Internal ,

two from two , optional

Integration

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Required Accessories for Remote Desktop

If you do not have an independent monitor, or if you want to use a remote desktop, you first need to login
to Raspberry Pi through SSH, and then open the VNC or RDP service. This requires the following accessories.

Pi Zero PiZeroW PiA+ Pi 3A+ Pi B+/2B Pi 3B/3B+/4B/5

Micro-USB to USB-A
Adapter & Cable

. P Yes Yes No
(Micro USB OTG NO
Cable)
USB to Ethernet
. Yes Yes Yes
interface

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

Raspberry Pi OS

Without Screen - Use Raspberry Pi - under Windows PC: https://youtu.be/YNDORUuUP-to

With Screen - Use Raspberry Pi - under Windows PC: https://youtu.be/HEywFsFri3|

Automatically Method

You can follow the official method to install the system for raspberry pi via visiting link below:
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
In this way, the system will be downloaded automatically via the application.

Manually Method

After installing the Imager Tool in the link above. You can also download the system manually first.

Visit https://www.raspberrypi.org/downloads/

Manually install an operating system image

Browse a range of operating systems provided by
Raspberry Pi and by other organisations, and download \l/
them to install manually.

See all download options /

Operating system images

Many operating systems are available for Raspberry Pi, including
Raspberry Pi OS, our official supported operating system, and
operating systems from other organisations.

Raspberry Pi Imager is the quick and easy way to install an operating Download:
system to a microSD card ready to use with your Raspberry Pi. Raspberry Pi 0S (32-bit)
Alternatively, choose from the operating systems below, available to Raspberry Pi Desktop
download and install manually. Third-Party operating systems
Raspberry Pi 0S
Compatible with: Raspberry Pi 0S with desktop and recommended software
Mpbﬂyw Release date: January 11th 2021
Kernel version: 5.4 Download
Size: 2,863MB

Show SHA256 file integrity hash: Download torrent
Release notes

And then the zip file is downloaded.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/YND0RUuP-to
https://youtu.be/HEywFsFrj3I
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
https://www.raspberrypi.org/downloads/

X support@freenove.com www.freenove.com [l

Write System to Micro SD Card
First, put your Micro SD card into card reader and connect it to USB port of PC.

SAMSUNG 0’zgsn
‘ BOE° | csoronw

Then open imager toll. Clicked Choose Device.

%, Raspberry Pilmager v1.8.3 — O X

' Raspoerry Pi

Raspberry Pi Device Operating System Storage

CHOOSE DEVICE CHOOSE 05 CHOOSE STORAGE

Select a Raspberry Pl Device based on your Raspberry Pl version. It will help us filter out the right version of

the system for the Raspberry PI.

Raspberry Pi Device X

No filtering
Show every possible image

Raspberry Pi 5
The latest Raspberry Pi, Raspberry Pi 5

Raspberry Pi 4
Models B, 400, and Compute Modules 4, 45

Raspberry Pi Zero 2W
The Raspberry Pi Zero 2'W

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

Clicked Operating System.

#, Raspberry Pilmager v1.8.3 — O X

' Raspberry P}

Raspberry Pi Device Operating System Storage

RASPBERRY Pl 5 CHOOSE 05 CHOOSE STORAGE

Choose system that you just downloaded in Use custom.

¥, Raspberry Pilmagerv1.8.5 — O x

Operating System X
Media player operating systems

Other specific-purpose 05
Thin elients, digital signage and 3D printing operating systems

o/
Freemium and paid-for 05

Freemium and paid-for operating systems
U

Misc utility images
Bootloader EEPROM configuration, ete.

Erase
Format card as FAT32

Use custom

Select a custom .img from your computer

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Choose the SD card. Then click “Next”.

%, Raspberry Pilmager v1.8.3 — O X

‘ Raspberry Pi

Raspberry Pi Device Operating System Storage

RASPBERRY PI 5l RASPBERRY Pl OS FULL (64-BIT) EGENERIC MASS-STORAGE USB DE..

; NEXT

You can configure the Raspberry Pl according to your needs.

#, Raspberry Pilmager v1.8.3 — O X

Use 05 customisation?

uld you like to apply OS customisati ettings?

EDIT SETTINGS MO, CLEAR SETTINGS

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

. www.freenove.com

D4 support@freenove.com

Enable ssh and configure WiFi

On the GENERAL screen, configure your information based on your actual situation.

Enable SSH on the SERVICES page.

¥, 05 Customisation —

GENERAL SERVICES OPTIONS

Set hostname: Faspberrypi local

Set username and password

Username: Di

Password: ®eeessses

Configure wireless LAN

S81D: WiFi name

Password: WiFi passwords

Show password [_| Hidden SSID
Wireless LAN country: CN -
Set locale settings

Time zone: Asia/Shanghai -

Keyboard layout: Ug -

¥, 05 Customisation

GENERAL

SERVICES OPTIONS

Enable SSH

(® Use password authentication

o Allow public-key authentication only

RUN SSH-KEYGEMN

¥, Raspberry Pi Imager v1.8.5

All existing data on 'Generic Mass-Storage USB Device' will be

erased.

Are you sure you want to continue?

o &3

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Insert SD card

Then remove SD card from card reader and insert it into Raspberry Pi.

Raspbery Pi [5]

Connect to the power supply and wait for the Raspberry Pl to turn on.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com B4 support@freenove.com

Getting Started with Raspberry Pi

Monitor desktop

If you do not have a spare monitor, please skip to next section Remote desktop & VNC. If you have a spare

monitor, please follow the steps in this section.

After the system is written successfully, take out Micro SD Card and put it into the SD card slot of RPi. Then
connect your RPi to the monitor through the HDMI port, attach your mouse and keyboard through the USB
ports, attach a network cable to the network port and finally, connect your power supply (making sure that it
meets the specifications required by your RPi Module Version. Your RPi should start (power up). Later, after
setup, you will need to enter your user name and password to login. The default user name: pi; password:
raspberry. After login, you should see the following screen.

Wastebasket

Congratulations! You have successfully installed the RASPBERRY PI OS operating system on your RPi.
Raspberry Pi 5, 4B, 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi
of other models can use wireless remote desktop through accessing an external USB wireless card.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Remote desktop & VNC

If you have logged in Raspberry Pi via display, you can skip to VNC Viewer.

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share
a display, keyboard, and mouse with your PC. Below is how to use:
MAC OS remote desktop and Windows OS remote desktop.

MAC OS Remote Desktop

Open the terminal and type following command. If this command doesn’t work, please move to next page.
ssh pi@raspberrypi.local
The password is raspberry by default, case sensitive. You may need to type yes during the process.

. @ freenove — pi@raspberrypi: ~ — ssh pi@raspberrypi.local — 80x24

freenove@®PandeMacBook-Air ~ %|ssh pi@raspberrypi.local
The authenticity of host 'ras . : T5810:cc80::66)' can't be e

stablished.
ED25519 key fingerprint is SHA256:P8vv8JjHarvk83rJl9ptpl/giR2XcW11V8Lukz®xtQOs.

This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

Are you sure you want to continue connecting (yes/no/[fingerprint])? ves
Warning: Permanently added 'raspberrypi.local' (ED25519) to the list of known ho
sts.

piPraspberrypi.local's password:

Permission denied, please try again.

pi@Praspberrypi.local's password:

Linux raspberrypi 6.6.20+rpt-rpi-2712 #1 SMP PREEMPT Debian 1:6.6.20-1+rptl (202
4-03-07) aarché4 '

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Jun 6 ©8:32:41 2024 from 192.168.1.85

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set
a new password.

Lpi@raspberrypi:- $ || I

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com B4 support@freenove.com

You can also use the IP address to log in Pi.
Enter router client to inquiry IP address named “raspberry pi”. For example, | have inquired to my RPi IP
address, and it is “192.168.1.95".

Open the terminal and type following command
ssh pi@192.168.1.95
When you see pi@raspberrypi:~ $, you have logged in Pi successfully. Then you can skip to next section.

? —— —
. @ freenove — pi@raspberrypi: ~ — ssh pi@192.168.1.95 — 80x24

freenove@PandeMacBook—-Air ~ %Issh piP192.168.1.95 I
The authenticity of host '192. 1. . .1.95)' can't be established.

ED25519 key fingerprint is SHA256:P8vv8J]jHarvk83rJ9ptpl/giR2XcW11V8Lukz@OxtQos.

This host key is known by the following other names/addresses:
~/.ssh/known_hosts:1: raspberrypi.local

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.1.95' (ED25519) to the list of known hosts.

piP192.168.1.95's password:

Linux raspberrypi 6.6.20+rpt-rpi-2712 #1 SMP PREEMPT Debian 1:6.6.20-1+rptl (202

4-@3-07) aarché4

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Jun 6 08:36:09 2024 from 24@e:3b4:3810:cc80:bcbd:ebed:287f:fbae

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

pi@raspberrypi:~ $ |]

v

Then you can skip to VNC Viewer.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you are using winl0, you can use follow way to login Raspberry Pi without desktop.
Press Win+R. Enter emd. Then use this command to check IP:
ping -4 raspberrypi.local

Bl C\Windows\system32\cmd.exe
i rsion 10, I
411 ri ghts

z -4 raspberrypl. local

= of data:

Then 192.168.1.147 is my Raspberry Pi IP.
Or enter router client to inquiry IP address named “raspberrypi”. For example, | have inquired to my RPi
IP address, and it is “192.168.1.95".
ssh pi@xxxxxxxxxxx(IP address)
Enter the following command:
ssh pi@192.168.1.95

BN pi@raspberrypi: ~

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Enable VNC

Type the following command. And select Interface Options=>P5 VNC - Enter=>Yes—>OK. Here Raspberry Pi
may need be restarted, and choose ok. Then open VNC interface.

sudo raspi-config

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

pifraspherrypi:~ $ sudo raspi-config
— | Raspberry Pi Software Configuration Tool (raspi-config) ——

1 System Options Configure system settings
2 Display Options Configure display settings
3 Interface Options Configure connections to peripherals
4 Performance Options Configure performance settings
5 Localisation Options Configure language and regional settings
6 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

9 About raspi-config Information about this configuration tool

<Select> <Finish>

—— Raspberry Pi Software Configuration Tool (raspi-config) |

I1 SSH Enable/disable remote command line access using SSH

I2 VNC Enable/disable graphical remote desktop access

I3 SPI Enable/disable automatic loading of SPI kernel module
14 12C Enable/disable automatic loading of I2C kernel module
I5 Serial Port Enable/disable shell messages on the serial connection
16 1-Wire Enable/disable one-wire interface

I7 Remote GPIO Enable/disable remote access to GPIO pins

<Select> <Back>

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Then download and install VNC Viewer according to your computer system by click following link:
https://www.realvnc.com/en/connect/download/viewer/

After installation is completed, open VNC Viewer. And click File = New Connection. Then the interface is
shown below.

pi5 - Properties - O *

General QOptions Expert

VNC Server: |192.168.1.99 |

Marne: | pis |

Labels
To nest labels, separate names with a forward slash (/)

| Enter a label name, or press Down to apply existing labels |

Security

Encryption: Let VMC Server choose ~ |

[] Authenticate using single sign-on (550 if possible
[~] Authenticate using a smartcard or certificate store if possible

Catchphrase: Bottle cantina acrobat. Quarter penal airline.

Signature: 19-e9-2a-00-e2-9e-9f-01

Username: pi v
[ok] cance

Enter ip address of your Raspberry Pi and fill in a name. Then click OK.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.realvnc.com/en/connect/download/viewer/

B vwww.freenove.com B4 support@freenove.com

Then on the VNC Viewer panel, double-click new connection you just created,

B vNC Viewer
File View Help

connect |Enter a VN Server address or search

pid

and the following dialog box pops up.

m Authentication Y

VMC Server: 192.168.1.117:5900

Username: |pi |

Password: |l|||||l-l-l- |

Remember password

Catchphrase: Sister logo octopus. Giraffe Gloria time.

Signature: 8b-6b-40-50-f6-9d-8b-f8

Enter username: pi and Password: raspberry. And click OK.

Wastebasket

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

If there is black window, please set resolution.

Zannot currentk W~ the deskiop

Set Resolution
You can also set other resolutions.

:) Education
’_“ Office

@D intemet

&P Inteme

]:l Sound & Video

m
Y Graphics

M Games
ﬁ Other

s Accessories

4‘ Help

| =] > m Add / Remove Software

¢/ Run E._v:n Appearance Settings

. Shutdown “"ﬁ Main Menu Editor

A Mouse and Keyboard Settings
F== Print Settings
8 Raspberry Pi Configuration

Recommended Software

! Screen Configuration

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

If you don't know what resolution to set properly, you can try 1920x1080.

‘ @ E Screen Layout Editor

Screen Layout Editor v A x

File Layout View Help

NOOP-1 L3 v Active
Resolution 3840x2160
Orientation > 3200x1800
2560x1440
2048x1080
v 1920x1080
1600x1200
1280x1024
1280x720
1024x768
800x600
720x480
640x480

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your
VNC View control panel, click right key. And select Properties->QOptions label->Scaling. Then set proper
scaling.

pi3 Connect
Rename F2
Delete
Duplicate Ctrl+D
Properties... Alt+Enter
& raspberry pi - Properties - O *

General Options Expert

General

Picture quality: | Automatic ~
[View-only

Scaling

| 100% v

Preserve aspect ratio

Keys
Pass media keys directly to WNC Server

Pass special keys directly to VNC Server

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

Raspberry Pi 5/4B/3B+/3B integrates a Wi-Fi adaptor.If you did not connect Pi to WiFi. You can connect it to
wirelessly control the robot.

V2]

@ g R F o817

Wastebasket

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Why “Chapter 0"? Because in program code the first number is 0. We choose to follow this rule. In this chapter,

we will do some necessary foundational preparation work: Start your Raspberry Pi and install some necessary
libraries.

Raspberry Pi OS is based on the Linux Operation System. Now we will introduce you to some frequently used
Linux commands and rules.

First, open the Terminal. All commands are executed in Terminal.

o —‘"-\. o
| .
174 Terminal

Wastebaskd

When you click the Terminal icon, following interface appears.

File Edit Tabs Help

pi@raspberrypi

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Note: The Linux is case sensitive.
First, type “Is” into the Terminal and press the “Enter” key. The result is shown below:

File Edit Tabs Help

pi@raspberrypi:

pi@raspberrypi:

The "Is” command lists information about the files (the current directory by default).

Content between “$" and "pi@raspberrypi:” is the current working path. “~" represents the user directory,
which refers to “/home/pi” here.

Later in this Tutorial, we will often change the working path. Typing commands under the wrong directory
may cause errors and break the execution of further commands.

Many frequently used commands and instructions can be found in the following reference table.

Is Lists information about the FILEs (the current directory by default) and entries
alphabetically.

cd Changes directory

sudo + cmd Executes cmd under root authority

g Under current directory

gcc GNU Compiler Collection

git clone URL Use git tool to clone the contents of specified repository, and URL in the repository address.
There are many commands, which will come later. For more details about commands. You can refer to:
http://www.linux-commands-examples.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.linux-commands-examples.com/

Now, we will introduce several commonly used shortcuts that are very useful in Terminal.

1. Up and Down Arrow Keys: Pressing “1" (the Up key) will go backwards through the command history and
pressing “V" (the Down Key) will go forwards through the command history.

2. Tab Key: The Tab key can automatically complete the command/path you want to type. When there is only
one eligible option, the command/path will be completely typed as soon as you press the Tab key even you
only type one character of the command/path.

As shown below, under the '~' directory, you enter the Documents directory with the “cd” command. After
typing “cd D", pressing the Tab key (there is no response), pressing the Tab key again then all the files/folders
that begin with “D” will be listed. Continue to type the letters "oc" and then pressing the Tab key, the
“Documents” is typed automatically.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

WiringPi is a GPIO access library written in C language for the used in the Raspberry Pi.

To install the WiringPi library, please open the Terminal and then follow the steps and commands below.
Note: For a command containing many lines, execute them one line at a time.

Enter the following commands one by one in the terminal to install WiringPi:

sudo apt-get update

git clone https://github.com/WiringPi/WiringP

cd WiringPi

./build

File Edit Tabs Help

worm InRelease

.. Done
git clone https:/s
Cloning into "WiringP1
ote: Enumerating

reused 1125

10 : ! 0 KiB 1.7 g done.

ulnﬁ dei

cd WiringPi/s
Jbuild

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

Run the gpio command to check the installation:

gpio -v
That should give you some confidence that the installation was a success.

File Edit Tabs Help

NOTE: To compile programs with wiringPi, you need to add:
-lwiringPi
i To use the Ge oard, MaxD

to also add:

son and contributors
LUTELY MNO WARRANTY

Revision: 08, Memory: 4096ME, Maker: Sony

A memory

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Obtain the Project Code

After the above installation is completed, you can visit our official website (http://www.freenove.com) or our

GitHub resources at (https://github.com/freenove) to download the latest available project code. We provide

both C language and Python language code for each project to allow ease of use for those who are skilled
in either language.

This is the method for obtaining the code:

In the pi directory of the RPi terminal, enter the following command.

cd

git clone --depth 1 https://github.com/freenove/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi
(There is no need for a password. If you get some errors, please check your commands.)

Wastebasket

pi@raspberrypi: ~

File Edit Tabs Help

After the download is completed, a new folder "Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi" is generated,
which contains all of the tutorials and required code.

This folder name seems a little too long. We can simply rename it by using the following command.

mv Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/ Freenove_Kit/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/
https://github.com/freenove

B www.freenove.com

D4 support@freenove.com

"Freenove_Kit" is now the new and much shorter folder name.

pi@raspberrypi: ~

File Edit Tabs Help

"aspberrypi

iberrypi

Freenove Kit

File Edit View Sort Go Tools
T g n| & /Il /home/pifFreenove_Kit v
Home Folder i
{4 Filesystem Root i
N dev Code Datasheet Libs Processing Scratch3 LICENSE.ixt
b letc N = = =
~ | Thome |- = f— f—
. List_Compl- readme.md Tutorial. pdf Tutorial_GP-
v &pl ete_RPi_Kit. |0Zero.pdf
Bookshelf ipg
= |Desktop
= Documents
2 |Downloads
v [l Freenove Kit
» Code
Datasheet

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 1 LED

This chapter is the Start Point in the journey to build and explore RPi electronic projects. We will start with
simple “Blink” project.

Project 1.1 Blink

In this project, we will use RPi to control blinking a common LED.

Component List

Raspberry Pi GPIO Extension Board & Ribbon Cable
(Recommended: Raspberry Pi5/ 4B / 3B+ / 3B
Compatible: 3A+ / 2B / 1B+ / 1A+ / Zero W / Zero)

BEREEEEEREEREERREREEREREREEERERREEEREEREERD
Raspberry Pi GPIO Extension Shield

#3V3 5Ve
#SDA1 5Ve
#SCL1 GNDe
#GPIO4 TXDOs
#GND RXDOs
#GPIO17 GPIO18s
#GPI027 GNDs
#GPI022 GPIO23s
#3V3 GPI024+
#MOSI GNDs
#MISO GPIO25a
#SCK CEOa
#GND CEle
#SDA0 SCLO»
#GPIO5 GNDs
#GPIO6 GPIO12s
#GPIO13 GNDs
#GPIO19 GPIO16e
#GPI026 GPIO20s
#GND GPIO21e

® o 0o o0 ® o 0 00 ® o o o0 ® o 0o 00 e o 0o 0 0 o o o ® o 0 0 o ® o 0 0o o ® o 0 0 0 ® o 0 0
® o o 0o 0 ® o o 0o o ® o 0 0o 0 ® o o 0 0

® © 0 0 0 0 O O ° O O O O O O O G O O O G G O O O O O G G O O O O O S OO O O O GO O OO OSSOSO S S G OO O S GG O
© © © 0 6 0 0 © O 0 0 O O O O O O O O O O O G O O O O O O O O O O O O O OO O O OO O O OO O OSSO GG SO O S S G S e S
©® © © 0 0 0 9 0 © 0 0 O O O O O O O O O O O O O OO S O O O O O O O O O OO S O O O O S O S O OO O S G S GGG G S GG O O
© © 0 0 0 0 © 0 © 0 0 O O O O O O O S OO O O O OO O S O O G SO O G O OO G OGO SO OO G OGO S G O O OO O O GO O e
® © © 0 0 0 © O 0 O O O O O O O O O O O O O O O O O O G O O O O O O O O O O O O OO OO O O G OO S S O S SO O S S GG O S
© © 0 0 0 0 © ° 0 0 0 O ° O O O O O S O O O O O O O O O O O S O O O G O OO S O OO OO O O S OO O S S O O OO O O SO O e
© © 0 0 0 0 9 © 0 O O O O O O O O O O O O O O OO O O G O O O O O O O O OO O OO O OO O S O OO SO O S SO O S S OGO
© © © 0 0 0 9 0 0 0 O O O O O O O O O O O O O O OO O OO O O OO O O OO O O O O O OO OO OO OO O O O S OO O S SO SO
© © 0 0 0 0 0 © 0 0 0 0O ° OO O O OO O S OO OO O OO G S OO S S O S G O e
© © 0 0 0 0 0 © © 0 0 0 O O O O O O O O O O O O OO O O O O O O O O O O OO O OO O O O O O O OO OO GG SO OO S OGO OO

® o 0o 0o e o 0 0 o ® o o 0o ® o o 0 o e o 0o 0 0 e o o o0 ® e 0 0 0 ® o 0o 0 0 ® e o 0 0 ® e 0 0 0

e o 0o 0o ® o 0 0o 0 ® o o 0 ® o o 0 0 U A) ® o o 0o 0 ® o 0o 0o o e o 0 0 0 ® o 0 0 0 ® o o o 0

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

LED x1 Resistor 220Q x1 Jumper
Specific quantity depends on the circuit.

—as.s - - - -

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.
Later, they will be reference by text only (no images as in above).

GPIO

GPIO: General Purpose Input/Output. Here we will introduce the specific function of the pins on the Raspberry
Pi and how you can utilize them in all sorts of ways in your projects. Most RPi Module pins can be used as
either an input or output, depending on your program and its functions.

When programming GPIO pins there are 3 different ways to reference them: GPIO Numbering, Physical
Numbering and WiringPi GPIO Numbering.

BCM GPIO Numbering

The Raspberry Pi CPU uses Broadcom (BCM) processing chips BCM2835, BCM2836 or BCM2837. GPIO pin
numbers are assigned by the processing chip manufacturer and are how the computer recognizes each pin.
The pin numbers themselves do not make sense or have meaning as they are only a form of identification.
Since their numeric values and physical locations have no specific order, there is no way to remember them
so you will need to have a printed reference or a reference board that fits over the pins.

Each pin’s functional assignment is defined in the image below:

Pin 1 Pin 2

+3v3
GPIO2 / SDAL
GPIO3 / 5CL1
GPIO4

+5V

+5V

GND
TXDO / GPIO 14
GND RXDO f GFIO 15
GPIO17 GPIO 18
GPIO27 GND
GPIO22 GPIO 23
+3V3
GPIO10 [MOSI
GFIOS | MISO
GPIO11 / SCLK

GND

GPIO 24

2
a
v

b=
T
L

<
2
C

B

GND

GPIO 25
CEO# [GPIOE
CEl# [GPIOT
ID_SC/ GPIOL

GFIOD /ID_SD
GPIOS GND

GPIO6 GPIO12
GFIO13
GPIO19 | MISO

GPIO26

GND

CE2# | GPIO16
MOSI [GPIO20
SCLK [GPIO21

»
©
©

»

-

]

(]
©

»

DOO0OO0CO0C00000CO0O0CO0OO0 0

GND

Pin 39 Pin 40

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://pinout.xyz/

X support@freenove.com www.freenove.com [l

PHYSICAL Numbering

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to
the SD card). This is 'Physical Numbering', as shown below:

000 000000 »O OO0

0000 - POO0000>00D000 =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(ario @around ()3av @sv (o,

WiringPi GPIO Numbering

Different from the previous two types of GPIO serial numbers, RPi GPIO serial number of the WiringPi are
numbered according to the BCM chip use in RPi.

wiringPi BCM BCM wiringPi

Pin GPIO Name Header Name GPIO Pin
— — 3.3v 1]2 v — — >y
8 R1:0/R2:2 SDA 3|4 5v — — E%

9 R1:1/R2:3 SCL 5|6 Ov — —
7 4 GPIO7 7|8 14 15 0y =
— — Ov 910 15 16 o o
0 17 GPIOO = 1112 GPIO1 18 1 RENCe
2 R1:21/R2:27 GPIO2 = 13|14 Ov — — 0 &t
3 22 GPIO3 = 15]16 GPIO4 23 4 N
— — 3.3v 17118 GPIO5 24 5 o &
12 10 MOSI = 19|20 Ov _ _ "
13 9 MISO =~ 21|22 GPIO6 25 6 0
14 11 SCLK | 23|24 CEO 8 10 -
— — Ov | 25126 CEf 7 11 o
30 0 SDAO 27|28 SCL.O 1 31 -
21 5 GPIO.21 | 29|30 oV t::
22 6 GPIO.22 31|32 GPIO26 12 26 0
23 13 GPI0.23 33|34 oV >
24 19 GPIO24 35|36 GPIO27 16 27 Ot“ﬁ
25 26 GPIO.25 37|38 GPIO28 20 28 ~
oV 39140 GPIO29 21 29 o

wirir:ngPi BCM Name Header Name BCM wirirngPi

Pin GPIO GPIO Pin

(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

You can also use the following command to view their correlation.
gpio readall

File Edit Tabs Help

pi@raspberrypi:

aspberrypi:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Circuit

First, disconnect your RPi from the GPIO Extension Shield. Then build the circuit according to the circuit and
hardware diagrams. After the circuit is built and verified correct, connect the RPi to GPIO Extension Shield.
CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause
permanent damage to your RPi!

Schematic diagram

| | PHYSICAL GPIO Numbering

The code uses this one.

3.3V 5V
—3.1 TXDO =&
-2 RXDO (10—
eyt GPIO18}-12~
111Gpio17 GP1023}-18
, 31GPI027 GPI024}-18
2 1GP1022 GPI025 |-22—
§ B 19 fmosi CEO 24—
21Imiso CE1 26— +
-23.1SCLK SCLO 28~
2L1SpA0 GPIO12}32~ 1
i ~224GPIO5 GPIO16 (30— -
¥ L S11GPios GPI020}38 '
-331GPIO13 GPIO2140 | ¥
%GPIO& i f /
(GPI026 Raspberry Pi | 20 | 5
GPIO Extension Shield
GND w
o +

Hardware connection. If you need any support, please contact us via: support@freenove.com

CICIY #SDA1

Raspberry Pi GPIO Extension Shield
PO #5CL1

Do NOT rotate Raspberry Pi to change the way of this connection.
Please plug T extension fully into breadboard.

[

Youtube video https://youtu.be/hGQtnxsrlL4
The connection of Raspberry Pi T extension board is as below. Don’t reverse the ribbon.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/hGQtnxsr1L4

B www.freenove.com D4 support@freenove.com

If you have a fan, you can connect it to 5V GND of breadboard via jumper wires.

How to distinguish resistors?

There are only three kind of resistors in this kit.

The one with 1 red ring is 10KQ) e R Rl

The one with 2 red rings is 220Q e

The one with 0 red ring is 1KQ R

Future hardware connection diagrams will only show that part of breadboard and GPIO Extension Shield.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Component knowledge

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles.
An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power
source and the shorter pin is connected to the negative (-) output, which is also referred to as Ground (GND).
This type of component is known as “Polar” (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode
is higher than its negative electrode and there is a narrow range of operating voltage for most all common
diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burnt out.

-

/y LED Voltage Maximum current Recommended current

211 2 Red 19-22V 20mA 10mA

Green 29-34V 10mA 5mA

- - Blue 29-34V 10mA 5mA
-} Volt ampere characteristics conform to diode

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A
resistor with a specified resistance value must be connected in series to the LED you plan to use.

Resistor

Resistors use Ohms (Q) as the unit of measurement of their resistance (R). 1IMQ=1000kQ, 1kQ=1000Q.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.
On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the
presence of a resistor in a circuit diagram or schematic.

1

2
2

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of
resistor color codes, please refer to the card in the kit package.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The
relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as
Ohm'’s Law where | = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows
you to solve the value of the third.

In the following diagram, the current through R1 is: I=U/R=5V/10kQ=0.0005A=0.5mA.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a
metal object or bare wire) this is a Short and results in high current that may damage the power supply and
electronic components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction
you insert them into a circuit, it will work the same)

Breadboard

Here we have a small breadboard as an example of how the rows of holes (sockets) are electrically attached.
The left picture shows the ways the pins have shared electrical connection and the right picture shows the
actual internal metal, which connect these rows electrically.

GPIO Extension Board

GPIO board is a convenient way to connect the RPi I/O ports to the breadboard directly. The GPIO pin
sequence on Extension Board is identical to the GPIO pin sequence of RPIi.

GP1017 GPIO18
GPI027 GND:
GP1022 GPIO23
MISO GPIO25:
CEQ
CE1
SCLO
GPI0S GND:

Raspberry Pi GPIO Extension Shield
SCK
GND
SDAQ

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Code

According to the circuit, when the GPIO17 of RPi output level is high, the LED turns ON. Conversely, when the
GPIO17 RPi output level is low, the LED turns OFF. Therefore, we can let GPIO17 cycle output high and output
low level to make the LED blink. We will use both C code to achieve the target.

C Code 1.1.1 Blink

First, enter this command into the Terminal one line at a time. Then observe the results it brings on your
project, and learn about the code in detail.

If you want to execute it with editor, please refer to section Code Editor to configure.

If you have any concerns, please contact us via: support@freenove.com

It is recommended that to execute the code via command line.

1. If you did not update wiring pi, please execute following commands one by one.

sudo apt-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

./build

2. Use cd command to enter 01.1.1_Blink directory of C code.

cd ~/Freenove Kit/Code/C_Code/01.1.1 Blink

3. Use the following command to compile the code “Blink.c” and generate executable file “Blink”.

of “lwiringPi” is low case of “L”".

gcc Blink.c -o Blink -lwiringPi

4. Then run the generated file “blink”.

sudo ./Blink

Now your LED should start blinking! CONGRATUALTIONS! You have successfully completed your first RPi
circuit!

pi@raspberrypi: ~/Freenove_Kit/Code/C_Code/01.1.1_Blink

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

B www.freenove.com

D4 support@freenove.com

You can also use the file browser. On the left of folder tree, right-click the folder you want to enter, and click
"Open in Terminal".

01.1.1_Blink

File Edit View Sort Go Tools

in g :: EaORS

Home Folder
(A Filesystem Root

T~ ‘ /home/pi/Freenove_Kit/Code/C_Code/01.1.1_Blink

4

-
Blink

S
Blink.c

Bookshelf
= Desktop
Documents

Downloads

[#=

-

Freenove_Kit
Code
C_Code
00.0.0_Hello

-

-

I 01.1.1_Blink Open in New Window
02.1.1_Buttonl Open in Terminal -
02.2.1_T.ab|e|a File Manager
03.1.1_LightWe Open With...
04.1.1_Breathit

Add to Bookmarks
05.1.1_Colorfu .
06.1.1_Doorbe| O TIPrESS:-
Paste
06.2.1_Alertor
07.1.1_ADC Copy Path(s)
Bename...

2 items Free space: 15.7 GiB (Total: 28.7 GiB)

You can press “Ctrl+C” to end the program. The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#define

ledPin 0 //define the led pin number

void main(void)
{

printf ("Program is starting ... \n”);
//Initialize wiringPi.

wiringPiSetup() ;

pinMode (1edPin, OUTPUT) ; //Set the pin mode

printf ("Using pin%d\n”, %ledPin) ;
while (1) {
digitalWrite (ledPin, HIGH);
printf(“led turned on >>>\n”);
delay (1000) ;

//0Output information on terminal

//Make GPIO output HIGH level
//Output information on terminal

//Wait for 1 second

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com

www.freenove.com .

digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf (“led turned off <<{<\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second

In the code above, the configuration function for GPIO is shown below as:

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only
wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK
output modes.

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with

the gpio program in a script before you start your program

Writes the value HIGH or LOW (1 or 0) to the given pin, which must have been previously set as an output.

For more related wiringpi functions, please refer to https://github.com/WiringPi/\WiringPi

GPIO connected to ledPin in the circuit is GPIO17 and GPIO17 is defined as 0 in the wiringPi numbering. So
ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0.
- #tdefine ledPin 0 //define the led pin number
GPIO Numbering Relationship

WingPi BCM(Extension) Physical

BCM(Extension) | WingPi

3.3V
GPIO2/SDA1
GPIO3/SCL1
GP1O4
]\[p)
GPIO17
GP1027
GP1022
3.3V
GPIO10/MQSI)
GPIO9/MOIS
GPIO11/SCLK
GND
GPIO0/SDAO
GPIOS
GPIO6
GPIO13
GPIO19
GP1026
GND

B support@freenove.com

5V
5V
]\\[p)
GP1014/TXD0O
GPIO15/RXD0
GPIO18
GND
GP1023
GP1024
€]\\[p)
GP1025
GPIO8/CEOQ
GPIO7/CE1
GPIO1/SCLO
GND
GPIO12
€]\\[p)
GPIO16
GP1020
GP1021

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

. www.freenove.com

D4 support@freenove.com

In the main function main(), initialize wiringPi first.

wiringPiSetup() ;

//Initialize wiringPi. \

After the wiringPi is initialized successfully, you can set the ledPin to output mode and then enter the while
loop, which is an endless loop (a while loop). That is, the program will always be executed in this cycle, unless
it is ended because of external factors. In this loop, use digitalWrite (ledPin, HIGH) to make ledPin output high
level, then LED turns ON. After a period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low
level, then LED turns OFF, which is followed by a delay. Repeat the loop, then LED will start blinking.

pinMode (ledPin, OUTPUT) ;//Set the pin mode
printf ("Using pin%d\n”, %ledPin) ;

while (1) {
digitalWrite(ledPin, HIGH); //Make GPI0 output HIGH level
printf (“led turned on >>>\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf (“led turned off <<<\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second

//0utput information on terminal

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you want to use other editor to edit and execute the code, you can learn them in this section.

Use the nano editor to open the file "Hello.c", then press " Ctrl+X " to exit.

nano Hello.c

As is shown below:

File Edit Tabs Help

GNU nano 7.2 Hello.c *
B i O
i i (]
MG It It L i
s It AN, Ly nJ

Use the following command to compile the code to generate the executable file “Hello”.
gcc Hello.c -o Hello

Use the following command to run the executable file “Hello”.

sudo ./Hello

After the execution, "Hello, World!" is printed out in terminal.

File Edit Tabs Help

pi@raspberrypi: nanc Hello.c
p aspberrypi: Hello.c -o Hello
pi@raspberrypi:

Hello.c

Hello
pi@raspberrypl:
hello, world
pi@raspberrypi:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

geany
Next, learn to use the Geany editor. Use the following command to open the Geany in the sample file
"Hello.c" file directory path.

geany Hello.c
Or find and open Geany directly in the desktop main menu, and then click File>Open to open the

"Hello.c", Or drag "Hello.c" to Geany directly.

A pis (WayVNC) - VNC Viewer

5

."lr o

{} Programming)} Geany Programmer's Editl:rzur

S
=
1]
=
=0
=}
i
e d
02
]
[}
=
a
—+
[
=

*Hello.c - /home/pi - Geany

File Edit Search View Document Project Build Tools Help

L ~B &8 = X e -9 B v

4 Symbols » Hello.c =
w 7 Functions 1 -
’ 2 #include <stdio.h=>
o2 main [4] 3
4 int main(){
5 printf({"hello, world!\n"});
6 return 1;
7 ¥
8
-
4 -
- 15:00:45: This is Geany 1.38.
15:00:45: File /home/pi/Hello.c opened (1).
Status
A

linez1/8 col:0 sel:0 INS TAB MOD mode LF encoding: UTF-8 filetype:C scope: unknown

If you want to create a new code, click File>New=>File>Save as (name.c or name.py). Then write the code.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Generate an executable file by clicking menu bar Build->Build.

File Edit Search View Document Project Build Tools Help
~ B « ¢ Compile
Symbols P Hello.c : Ly
Lint
w 9 Functions 1 -
o main [4] g #include Viake
4 int main(){ Make Custom Target...
5 printf() .
6 return 1; Viake Object
7 }
8
Execute
Set Build Commands

Then execute the generated file by clicking menu bar Build->Execute.

File Edit Search View Document Project Build Tools Help
~ B y 9 Compile
Build
Symbols » Hello.c _
Lint
w o2 Functions 1 i
o6 main [4] 2 #include ake
4 int main{){ Make Custom Target...
5 printf(. .
. return 1: WMake Object
7
2

Set Build Commands

After the execution, a new terminal window will output the characters “Hello, World!”, as shown below:

the default
risk - pl

is enabled and
Irity

the

the

pi
pi

login as

hello, world

1}

B support@freenove.com

user

user has

and

not been changed.

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

You can click Build->Set Build Commands to set compiler commands. In later projects, we will use various
compiler command options. If you choose to use Geany, you will need change the compiler command here.
As is shown below:

Set Build Commands

Label Command Working directory ~ Reset
C commands
1. - | .E}ompile gce -Wall -c "%f" -lwiringPi | ik
2. Build gcc -Wall -0 "%e" "%f" -lwiringPi | ad
3. Lint cppcheck --language=c --enable=y| | ik

Error regular expression: ik
Independent commands
1. Make make Pl
2. Make Custom Target... | make &
3. Make Object make %e.0 P
4 bl

Error reqular expression: Pid
Note: Item 2 opens a dialogue and appends the response to the command
Execute commands
1. I Execu-t;e | " f%e" | | | Vi
2 | | =
%d %e, %f %p, %l are substituted in command and directory fields, see manual for details.

Cancel oK

Here we have identified three code editors: vi, nano and Geany. There are also many other good code editors
available to you, and you can choose whichever you prefer to use.

In later projects, we will only use terminal to execute the project code. This way will not modify the code by
mistake.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Freenove Car, Robot and other products for Raspberry Pi

We also have car and robot kits for Raspberry Pi. You can visit our website for details.

https://www.amazon.com/freenove

FNKO0043 Freenove 4WD Smart Car Kit for Raspberry Pi

https://www.youtube.com/watch?v=42v0GZUQjZc
FNKO0050 Freenove Robot Dog Kit for Raspberry Pi

Sk ® = https://www.youtube.com/watch?v=7BmI|Z8_R9d4

FNK0052 Freenove_Big_Hexapod_Robot_Kit_for_Raspberry Pi
https://youtu.be/Lvghn]2DNZ0

Functions .& -~ ‘
1 Ny

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.amazon.com/freenove
https://www.youtube.com/watch?v=4Zv0GZUQjZc
https://www.youtube.com/watch?v=7BmIZ8_R9d4
https://youtu.be/LvghnJ2DNZ0

B vwww.freenove.com D4 support@freenove.com

Chapter 2 Buttons & LEDs

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.
In last section, the LED module was the output part and RPI was the control part. In practical applications, we
not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions
and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 2.1 Push Button Switch & LED

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our
LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 | Resistor 220Q | Resistor 10kQ | Push
GPIO Extension Board & Wire x1 x1 X2 Button
Breadboard x1 Switch x1

Jumper Wire | .

—aaas.s - -

Please Note: In the code “button” represents switch action.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Component knowledge

Push Button Switch

This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left
and right sides are the same per the illustration:

1

When the button on the switch is pressed, the circuit is completed (your project is Powered ON).

Circuit

Schematic diagram

3.3V 5V
—3-5 28/811 &88 8 R3 is used to limit current
- 85:8‘117 gg:ggg é to protect GPIO 18, ifyou
R3
131Gpio27 GPIO24}-18 0@ set it to output HIGH level
151GPI022 GPI02522 .
B 191mosi 850 b2 \ bv mistake.
2LImiso E1}28 ‘
231scLK SCLO 28— !
-2L1SDAD GPIO12}32~
Y 291GpI05 GPIO16 /36
¥ i -311GPIo6 GPI020}38
-331GpI013 GPI021}40
-35.1GPI019
GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via:support@freenove.com

e o 00 0
e o 00 0

U
L)
® e 0000 00
LI
U

-m-'ocot-w'
e e e s oEmEENNED ° ¢ 0 e e e
ooo.-oo-oo.ooc_tolo'coco.c

® o 0 0 0
P

LI
..
® e 00 00 0
oo
U

Raspberry Pi GPIO Extension Shield

There are two kinds of push button switch in this kit.
The smaller push button switches are contained in a plastic bag.
Youtube video: https://youtu.be/ 5geld6finM

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/_5ge1d6f1nM

B vwww.freenove.com B4 support@freenove.com

This is how it works.
When button switch is released:

Raspberry Pi GPIO Extension Shield

DR

e e o

Raspberry Pi GPIO Extension Shield

AAAAAAAAARAAAARAAARAAAARARAAAARAR A AN

Code

This project is designed for learning how to use Push Button Switch to control an LED. We first need to read
the state of switch, and then determine whether to turn the LED ON in accordance to the state of the switch.

C Code 2.1.1 ButtonLED

First, observe the project result, then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 02.1.1_ButtonLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/02.1.1_ButtonLED

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED”
gcc ButtonLED.c -0 ButtonLED -lwiringPi

3. Then run the generated file “ButtonLED".

sudo ./ButtonLED

Later, the terminal window continues to print out the characters “led off-". Press the button, then LED is
turned on and then terminal window prints out the "led on‘--". Release the button, then LED is turned off and
then terminal window prints out the "led off-". You can press "Ctrl+C" to terminate the program.

The following is the program code:

| 1 ‘ #include <wiringPi.h> ‘

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

#include <stdio.h>

#define ledPin 0 //define the ledPin
#define buttonPin 1 //define the buttonPin

void main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

pinMode (1edPin, OUTPUT); //Set ledPin to output
pinMode (buttonPin, INPUT);//Set buttonPin to input

pullUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if (digitalRead (buttonPin) == LOW) { //button is pressed
digitalWrite(ledPin, HIGH); //Make GPI0 output HIGH level

printf ("Button is pressed, led turned on >>>\n”); //Output information on
terminal
}
else { //button is released
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf ("Button is released, led turned off <<<\n”); //Output information on
terminal

}
In the circuit connection, LED and Button are connected with GPIO17 and GPIO18 respectively, which

correspond to 0 and 1 respectively in wiringPl. So define ledPin and buttonPin as 0 and 1 respectively.
#tdefine ledPin 0 //define the ledPin
#tdefine buttonPin 1 //define the buttonPin

In the while loop of main function, use digitalRead(buttonPin) to determine the state of Button. When the

button is pressed, the function returns low level, the result of “if” is true, and then turn on LED. Or, turn off
LED.

if(digitalRead (buttonPin) == LOW) { //button has pressed down
digitalWrite (ledPin, HIGH); //led on
printf("led on...\n");
}
else { //button has released
digitalWrite (ledPin, LOW); //led off
printf(”. .. led off\n");

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Reference:

This function returns the value read at the given pin. It will be “HIGH” or “LOW"(1 or 0) depending on the
logic level at the pin.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Project 2.2 MINI Table Lamp

We will also use a Push Button Switch, LED and RPi to make a MINI Table Lamp but this will function differently:
Press the button, the LED will turn ON, and pressing the button again, the LED turns OFF. The ON switch
action is no longer momentary (like a door bell) but remains ON without needing to continually press on the
Button Switch.

First, let us learn something about the push button switch.

Debounce a Push Button Switch

When a Momentary Push Button Switch is pressed, it will not change from one state to another state
immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it
stabilizes in a new state too fast for Humans to detect but not for computer microcontrollers. The same is true
when the push button switch is released. This unwanted phenomenon is known as “bounce”.

press | s;ca ble rellease| stable
U
U |
. |
Ideal state I }
| | N
u | | t
™ |
| |
Virtual state ‘ | ‘
| N
| 7
|

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and
releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the
microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our
solution: to judge the state of the button multiple times. Only when the button state is stable (consistent) over
a period of time, can it indicate that the button is actually in the ON state (being pressed).

This project needs the same components and circuits as we used in the previous section.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

Code

In this project, we still detect the state of Push Button Switch to control an LED. Here we need to define a
variable to define the state of LED. When the button switch is pressed once, the state of LED will be changed
once. This will allow the circuit to act as a virtual table lamp.

C Code 2.2.1 Tablelamp

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 02.2.1_Tablelamp directory of C code.

2. Use the following command to compile “Tablelamp.c” and generate executable file “Tablelamp”.

3. Tablelamp: Then run the generated file “Tablelamp”.

When the program is executed, press the Button Switch once, the LED turns ON. Pressing the Button Switch
again turns the LED OFF.

#include <wiringPi.h>

#include <stdio.h>

#tdefine ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int ledState=LOW; //store the State of led

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state
long captureTime=50; //set the stable time for button state
int reading;

int main(void)

{

printf ("Program is starting...\n”);

wiringPiSetup(); //Initialize wiringPi.

pinMode (1edPin, OUTPUT); //Set ledPin to output
pinMode (buttonPin, INPUT); //Set buttonPin to input

pullUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {
reading = digitalRead(buttonPin); //read the current state of button
if(reading != lastbuttonState) { //if the button state has changed, record the time
point

lastChangeTime = millis();

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X support@freenove.com www.freenove.com [l

//if changing—state of the button last beyond the time we set, we consider that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data.
if(reading != buttonState) {
buttonState = reading;
//if the state is low, it means the action is pressing
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
ledState = !ledState; //Reverse the LED state
if (ledState) {
printf (“turn on LED ...\n");

}
else {

printf (“turn off LED ...\n”);
}

}

//if the state is high, it means the action is releasing
else {

printf ("Button is released!\n”);

}
digitalWrite(ledPin, ledState) ;
lastbuttonState = reading;

return 0;

This code focuses on eliminating the buffeting (bounce) of the button switch. We define several variables to
define the state of LED and button switch. Then read the button switch state constantly in while () to determine
whether the state has changed. If it has, then this time point is recorded.

reading = digitalRead(buttonPin); //read the current state of button
if(reading != lastbuttonState) {
lastChangeTime = millis();

This returns a number representing the number of milliseconds since your program called one of the
wiringPiSetup functions. It returns to an unsigned 32-bit number value after 49 days because it “wraps”
around and restarts to value 0.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

Then according to the recorded time point, evaluate the duration of the button switch state change. If the
duration exceeds captureTime (buffeting time) we have set, it indicates that the state of the button switch has
changed. During that time, the while () is still detecting the state of the button switch, so if there is a change,
the time point of change will be updated. Then the duration will be evaluated again until the duration is
determined to be a stable state because it exceeds the time value we set.

if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data.
if(reading != buttonState) {

buttonState = reading;

Finally, we need to judge the state of Button Switch. If it is low level, the changing state indicates that the
button Switch has been pressed, if the state is high level, then the button has been released. Here, we change
the status of the LED variable, and then update the state of the LED.
if (buttonState == LOW) {

printf ("Button is pressed!\n”);

ledState = !ledState; //Reverse the LED state

if (ledState) {

printf (“turn on LED ...\n");

}

else {

printf (“turn off LED ...\n”);

}
//if the state is high, it means the action is releasing
else {

printf ("Button is released!\n”);

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 3 LED Bar Graph

We have learned how to control one LED to blink. Next, we will learn how to control a number of LEDs.

Project 3.1 Flowing Water Light

In this project, we use a number of LEDs to make a flowing water light.

Component List

Raspberry Pi (with 40 GPIO) x1 Bar Graph LED x1 Resistor 220Q x10
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x 1

— -

Component knowledge

Let us learn about the basic features of these components to use and understand them better.

Bar Graph LED

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom
are paired to identify each LED like the single LED used earlier.

1 20 1—|>+:fzo
2 19 219
3 18 3 b 18
4 17 417
5 16 516
6 15 6 > 15
7 14 7> 14
8 13 8 > 13
9 12 9 12
10 11 10K 11

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com B4 support@freenove.com

Circuit

A reference system of labels is used in the circuit diagram below. Pins with the same network label are
connected together.

Schematic diagram

r 33V 5V

220Q 1 /"/20 8
SDA1 TXDO

200, Zrg SCL1 SCL1 RXDO |10
—L1GPI04 GPI018}12——Grioig

200 5 o GPIO17 GPIO17 GPI1023}16 GPI023
GPI027 GPI027 GPI1024 ;g GPI02d

220Q , Jx GP1022 GP1022 GPI1025 GPI025
-194mos| CEO (24— cey

2200 ¢ e 21dmiso CE1}28
~234SCLK SCLO {28~

200 e -2L1spAo GPIO12}32~
-29.1GPI05 GPI016 }-26—

200 7, -211GPI06 GPI020 }-28—
-331GPIO13 GPI1021 140

200 g Zm o -221GP1019

ET ~3L4GPI026 Raspberry Pi
220Q o A {
9 <412 GPIO Extension Shield
VVVV™TT0 DI E GND

2200 40 I

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

!
Lia]

[l

5Ve CE
Ve B
GND= 30
CEOs
CE1e X
SCLO= 3
GNDe £
e o o
e e o o o

GNDe IO
019 GPIO16= N3

TXD0» I

RXDO# IR

GNDs 303
GPI024s O

GNDe I

06 GPIO12e 0

026 GPI020s N0

GPIO21e G

CRCA oGND

. ® © 0 0 0 0 00 00 0 0 00 00 0 0 0
Pttt
® © 9 9 8 6 0 0 5 5 0 00 0 00 0 0 00 O O OO OO e G O s

R S—

® o 0 0 0 ® o 0 00 ® o 0o 0o 0 ® o 0o 0 0 ® o o 0 0

#GPIO17 GPIO18e

#GPIO27
P #GPI022 GPIO23e IO

—e3V3

Y #3V3

'Y #SDA1

4 #SCL1
Pl #GPIO4

P «GND
T «MOSI

Raspberry Pi GPIO Extension Shield

If LEDbar doesn’t work, rotate LEDbar 180° to try. The label is random.

Youtube video: https://youtu.be/3rh-b05VoiU

In this circuit, the cathodes of the LEDs are connected to the GPIO, which is different from the previous circuit.
The LEDs turn ON when the GPIO output is low level in the program.

Code

This project is designed to make a flowing water lamp, which are these actions: First turn LED #1 ON, then

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/3rh-b05VoiU

X support@freenove.com www.freenove.com [l

turn it OFF. Then turn LED #2 ON, and then turn it OFF... and repeat the same to all 10 LEDs until the last LED
is turns OFF. This process is repeated to achieve the “movements” of flowing water.
C Code 3.1.1 LightWater

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 03.1.1_LightWater directory of C code.

2. Use the following command to compile “LightWater.c” and generate executable file “LightWater”.

3. Then run the generated file “LightWater".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code:

#include <wiringPi.h>
finclude <stdio.h>

fidefine ledCounts 10
int pins[ledCounts] = {0,1,2,3,4,5,6,8,9, 10} ;

void main(void)
{
int i;

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

for (i=0;i<ledCounts;i++) { //Set pinMode for all led pins to output
pinMode (pins[i], OUTPUT) ;
}
while (1) {
for (i=0;i<ledCounts;i++) { // move led(on) from left to right
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite (pins[i], HIGH) ;
}
for (i=ledCounts—1;i>-1;i——) { // move led(on) from right to left
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite (pins[i], HIGH) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

In the program, configure the GPIO0-GPIO9 to output mode. Then, in the endless “while” loop of main
function, use two “for” loop to realize flowing water light from left to right and from right to left.
while (1) {
for(i=0;i<ledCounts;i++) { // move led(on) from left to right
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite (pins[i], HIGH) ;

}

for (i=ledCounts—1;i>-1;i——) { // move led(on) from right to left
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite (pins[i], HIGH) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X support@freenove.com www.freenove.com [l

Chapter 4 Analog & PWM

In previous chapters, we learned that a Push Button Switch has two states: Pressed (ON) and Released (OFF),
and an LED has a Light ON and OFF state. Is there a middle or intermediated state? We will next learn how to
create an intermediate output state to achieve a partially bright (dim) LED.

First, let us learn how to control the brightness of an LED.

Project 4.1 Breathing LED

We describe this project as a Breathing Light. This means that an LED that is OFF will then turn ON gradually
and then gradually turn OFF like "breathing”. Okay, so how do we control the brightness of an LED to create
a Breathing Light? We will use PWM to achieve this goal.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire

—aaas.s - -

Component Knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-
time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A
familiar example of an Analog Signal would be how the temperature throughout the day is continuously
changing and could not suddenly change instantaneously from 0°C to 10°C. However, Digital Signals can
instantaneously change in value. This change is expressed in numbers as 1 and O (the basis of binary code).
Their differences can more easily be seen when compared when graphed as below.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

ANALOG DIGITAL

AN N\
7t 7t

Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.

In practical applications, we often use binary as the digital signal, that is a series of 0's and 1's. Since a binary
signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals
can be converted into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.
Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve
this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high
levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels
is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high
level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse
duration, or pulse width (PW) to the total period (T) of the waveform. The longer the output of high levels last,
the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following
figures show how the analog signal voltages vary between OV-5V (high level is 5V) corresponding to the pulse
width 0%-100%:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m B4 support@freenove.com www.freenove.com [l

ANALOG
AU DIGITAL
5V
0% Duty Cycle
0 > .
AU
5V
25% Duty Cycle —‘ —l W —I —‘
0 > .
MU puﬁrﬁ?dm
5V
50% Duty Cycle T H T (
0 > .
MNU
5v
75% Duty Cycle ' (
0 > .
AU
5V
100% Duty Cycle
0 >

t

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this
relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

It is evident, from the above, that PWM is not actually analog but the effective value of voltage is equivalent
to the corresponding analog value. Therefore, by using PWM, we can control the output power of to an LED
and control other devices and modules to achieve multiple effects and actions.

In RPi, GPIO18 pin has the ability to output to hardware via PWM with a 10-bit accuracy. This means that 100%
of the pulse width can be divided into 2*°=1024 equal parts.

The wiringPi library of C provides both a hardware PWM and a software PWM method.

The hardware PWM only needs to be configured, does not require CPU resources and is more precise in time
control. The software PWM requires the CPU to work continuously by using code to output high level and

low level. This part of the code is carried out by multi-threading, and the accuracy is relatively not high enough.

In order to keep the results running consistently, we will use PWM.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com m

Circuit
Schematic diagram Hardware connection. If you need any support, please
| I S feel free to contact us via: support@freenove.com
33V 5V

—31spA1 TXDO -8
—2{SCL1 RXDO {10 © g
—L1GPIO4 GPI018}-12 - K

11GPI017 GPI023 |18 & 5

31GPI027 GPI024 18 e s

2.1GPI022 GPI1025 |-22— -

21Mos| CEO0 (24— - E
-21IMISO CE1{28 ‘B
-231SCLK SCLO}-28— -
-2L1SDAD GPIO12}32— : B
29.1GPI05 GPIO16 36— - S
-311GPIO6 GPIO20 |28~ ¢ e £
-33.1GPI013 GPIO21 4. %X & S
-321GPI019 “E

(GPIO026 Raspberry Pi -
GPIO Extension Shield
GND ?m
220Q
Youtube video: https://youtu.be/rYxykuVgYtA

Code

This project uses the PWM output from the GPIO18 pin to make the pulse width gradually increase from 0%
to 100% and then gradually decrease from 100% to 0% to make the LED glow brighter then dimmer.

C Code 4.1.1 BreathingLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 04.1.1_BreathingLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/04.1.1 BreathingLED

2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED”.
gcc BreathingLED.c -0 BreathingLED -lwiringPi

3. Then run the generated file “BreathingLED"

sudo ./BreathingLED

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually
like breathing.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm. h>
#tdefine ledPin 1
void main(void)

{

S O A~ W N

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/rYxykuVgYtA

X support@freenove.com www.freenove.com [l

int 1i;

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

softPwmCreate (1edPin, 0, 100)://Creat SoftPWM pin

while (1) {

for (i=0;i<100;i++) { //make the led brighter
softPwmWrite (ledPin, 1i):
delay (20) ;

}

delay (300) ;

for(i=100;i>=0;i——) { //make the led darker
softPwmWrite (ledPin, 1i):
delay (20) ;

}

delay (300) ;

}
First, create a software PWM pin.
[softPwnCreate (ledPin, 0, 100);//Creat SoftPM pin
There are two “for” loops in the next endless “while” loop. The first loop outputs a power signal to the ledPin
PWM from 0% to 100% and the second loop outputs a power signal to the ledPin PWM from 100% to 0%.
while (1) {
for (i=0;1<100;i++) {
softPwmWrite (ledPin, 1i):
delay (20) ;

}

delay (300) ;

for (i=100;1i>=0;i—) {
softPwmiWrite (ledPin, 1i);
delay (20) ;

}

delay (300) ;

}

You can also adjust the rate of the state change of LED by changing the parameter of the delay() function in
the “for” loop.

This creates a software controlled PWM pin.

This updates the PWM value on the given pin.

For more details, please refer https://github.com/WiringPi/\WiringPi

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

B vwww.freenove.com B4 support@freenove.com

Chapter 5 RGB LED

In this chapter, we will learn how to control a RGB LED.

An RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue
light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common
which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of a
RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and
brightness by controlling the 3 Cathodes (2, 3 & 4) of the RGB LED

W) 1
R G B
IR
293 2 3 4
1
Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints,
the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with

varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell
phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon.

RGB

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 2°+2°+2°=16777216 (16 million)
colors through different combinations of RGB light brightness.
Next, we will use RGB LED to make a multicolored LED.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Project 5.1 Multicolored LED

Component List

Raspberry Pi (with 40 GPIO) x1 RGB LED x1 Resistor 220Q x3
GPIO Extension Board & Wire x1
Breadboard x1 I"l

Jumper Wire “
—aaas.s - -

Circuit

Schematic diagram

3.3V 5V
—3.1SDA1 TXDO =8
—21scL1 RXDO}-1Q
LED! —L1GPIO4 GPIO18[-12
=P —WWW~ 11GPI017 GPI023}16
™ Do 3 1GPIO27 GPI1024 18
W -151GPI022 GPIO25[2
N 230 -19.1mos| CE0}2
2LImiso CE1}2
N ~234SCLK SCLOe8-
-2L1SDAO GPIO12}3
29.1GPIO5 GPIO16}3
311GPIo6 GPI020}3
-331GPI013 GPI1021 140
-35.1GPIO19
~3L1GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

.
.
.
.
.
°
.
. .
.
.
e e e o0
e e o o0
e e 0 o o

&l o
. 2
- -
- B
- c
- B
- 7]
- c
- @

£
- >
- w
&l o
- BN
L O
- o
t
- B
- 3
- -3
- Q
-]
P ©
- 3

Video: https://youtu.be/tbnX2AsX2y4

In this kit, the RGB led is Common anode. The voltage difference between LED will make it work. There is

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/tbnX2AsX2y4

B vwww.freenove.com B4 support@freenove.com

no visible GND. The GPIO ports can also receive current while in output mode.
If circuit above doesn’t work, the RGB LED may be common cathode. Please try following wiring.
There is no need to modify code for random color.

= B
-
il =
= K4
= c
- B
- I
ll
= B

-]
= I3
- w
B o
- BN
L O
-l o
=
- B3
Bl o
- B
L o
= B3
- B
L o

Code

We need to use the software to make the ordinary GPIO output PWM, since this project requires 3 PWM and
in RPi only one GPIO has the hardware capability to output PWM,

C Code 5.1.1 Colorful LED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 05.1.1_ColorfulLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/05.1.1_ColorfulLED

2. Use following command to compile “ColorfulLED.c” and generate executable file “ColorfulLED”.
Note: in this project, the software PWM uses a multi-threading mechanism. So “-Ipthread” option need
to be add to the compiler.

gcc ColorfulLED.c -o ColorfulLED -lwiringPi -Ipthread

3. And then run the generated file “ColorfulLED".

sudo ./ColorfulLED

After the program is executed, you will see that the RGB LED shows lights of different colors randomly.

The following is the program code:

#include <wiringPi.h>
#include <softPwm. h>
#include <stdio.h>
#include <stdlib.h>

#idefine ledPinRed 0
#idefine ledPinGreen 1

#idefine ledPinBlue 2

© 00 N O Ol B~ W N

void setupLedPin(void)
{

—_ =
= O

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (1edPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (1edPinBlue, 0, 100); //Creat SoftPWM pin for blue

void setLedColor(int r, int g, int b)

{
softPwmWrite (ledPinRed, 1); //Set the duty cycle
softPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmiWrite (ledPinBlue, b); //Set the duty cycle

int main(void)
{

int r,g,b;

printf ("Program is starting ...\n”);

wiringPiSetup(); //Initialize wiringPi.

setupLedPin() ;
while (1) {
r=random()%100; //get a random in (0, 100)
g=random ()%100; //get a random in (0, 100)
b=random()%100; //get a random in (0, 100)
setLedColor (r, g,b) ;//set random as the duty cycle value
// If you are using common anode RGBLED, it should be setLedColor (100-r, 100—g, 100-b)
// 1f you want show red, it should be setLedColor (0, 100, 100)
printf ("r=%d, g=%d, b=%d \n”,r, g, b);
delay (1000) ;
}

return 0;

First, in subfunction of ledInit(), create the software PWM control pins used to control the R, G, B pin
respectively.

void setupLedPin(void)

{
softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue

}
Then create subfunction, and set the PWM of three pins.
- void setLedColor(int r, int g, int b)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

softPwmiWrite (ledPinRed, 1); //Set the duty cycle
softPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmiWrite (ledPinBlue, b); //Set the duty cycle

}
Finally, in the “while” loop of main function, get three random numbers and specify them as the PWM duty
cycle, which will be assigned to the corresponding pins. So RGB LED can switch the color randomly all the
time.

while (1) {
r=random()%100; //get a random in (0, 100)
g=random ()%100; //get a random in (0, 100)
b=random()%100; //get a random in (0, 100)
setLedColor(r, g,b) ;//set random as the duty cycle value
printf ("r=%d, g=%d, b=%d \n”,1, g, b);
delay (1000) ;

}

The related function of PWM Software can be described as follows:

This function will return a random number.

For more details about Software PWM, please refer to: https://github.com/WiringPi/\WiringPi

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

X support@freenove.com www.freenove.com [l

Chapter 6 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. And in our next project, we will use an
active buzzer to make a doorbell and a passive buzzer to make an alarm.

Project 6.1 Doorbell

We will make a doorbell with this functionality: when the Push Button Switch is pressed the buzzer sounds
and when the button is released, the buzzer stops. This is a momentary switch function.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

NPN transistorx1 Active buzzer x1 Push Button Resistor 1kQ x1 | Resistor 10kQ x2
(58050) Switch x1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component knowledge

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic
alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active
buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an
external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer

-+
]

= +=
T 2]

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers
require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various
frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive
buzzer is the loudest when its resonant frequency is 2kHz.

How to identify active and passive buzzer?

1. As arule, there is a label on an active buzzer covering the hole where sound is emitted, but there are
exceptions to this rule.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and
crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating
(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not
have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see
the circuit board, coils, and a permanent magnet (all or any combination of these components
depending on the model.

Active buzzer bottom Passive buzzer bottom
Transistors

A transistor is required in this project due to the buzzer's current being so great that GPIO of RPi’s output
capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

amplify the current.

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a
transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals,
or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When
there is current passing between "be" then "ce" will have a several-fold current increase (transistor
magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds
a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation region
and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

PNP transistor NPN transistor
11 E 3]C
P 5 ¥ i
B B
19283 3]c 142083 1l E
E B C EB C

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers
output current capacity is very weak, we will use a transistor to amplify its current in order to drive components
requiring higher current.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high
level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds.
If GPIO outputs low level, no current will flow through R1, the transistor will not conduct currentand buzzer
will remain silent (no sounds).

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level,
current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs
high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent
(no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer.

NPN transistor to drive buzzer PNP transistor to drive buzzer
= s
(1] 1 R1
2 ||| Buzzer 1kQ
| T Uno Pin MAN I:Q1
R1
1kQ
Uno Pin AW Q1 (1] 1
2 |J)| Buzzer
T

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X support@freenove.com www.freenove.com [l

Circuit

Schematic diagram with RPi GPIO Extension Shield

4l

]2 -

T R2 §

3.3V 5V 1
—31spA1 TXDO }-8 -
5 —24SCL1 RXDOHQ- oo
3 —L1GPIO4 GPIO18112 A4
A 111GPI017 GPI023 16
wo A34GPIo27 GPI024 |18
121GPI022 GPI025}22.
19.4mos| CEQ}2i—
21Imiso CE1 <28~ I
~-234SCLK scLope8-~ |
2L1SDAO GPIO12}32- :
291GPI05 GPI016}-36~
S11GPIos GP1020}-38
-331GPI013 GPI021 40
%\GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

:] e e o o o e o o 0 0 ® ®o ° o 0 ® e o 0 0 * °o o 0 . L .
= o

- £

- (%2}

- c LR T I A I I I I O A I A e s e 00000 0
— 9 = — I I I IR e o 0o 0 0 . LN)
E = 2328009 o s Uy o ¢ o o o ee e s 000 e
- @ NSNWw > © I A I A I I I
- <« OGF0oVLL

- > -0 = wo ® e o 0 . LA
- w s?—g

& o

- BN o

- ® ® 9 9 9 0 9 O O PO OSSN YOO
L O D e O ==

- A =g ® e 0o 006 00 00 'oo.ncco-on'o.ooocco...oo-
- K3 =9

= e -m.-.' ® © 0 0 0 00 0 00 00 000 e 00 00 0 0 e e e e
— ? D e e e o e o e o ® ® 9 9 0 0 0 O P P P S e S S e S S S S e
: g ® 0 0 0 0 " " 00 e e e o * o ® ® 9 0 9 0 0 0 P OO OO S EY NPY YD
- 7]

- 3]

a0 eee o ooeel eeeee oseseee o0eel o e oo « e . .
- e e © e e e ee eeeee eeeee oo e oo e e . .

Video: https://youtu.be/R_dmi3YwY-U
Note: in this circuit, the power supply for the buzzer is 5V, and pull-up resistor of the push button switch is
connected to the 3.3V power feed. Actually, the buzzer can work when connected to the 3.3V power feed
but this will produce a weak sound from the buzzer (not very loud).

Code

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the
buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that
controlled an LED ON and OFF.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/R_dmi3YwY-U

B vwww.freenove.com D4 support@freenove.com

C Code 6.1.1 Doorbell

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.1.1_Doorbell directory of C code.

2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”.

3. Then run the generated file “Doorbell”.

After the program is executed, press the push button switch and the will buzzer sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

finclude <wiringPi.h>
finclude <stdio.h>

#define buzzerPin 0 //define the buzzerPin
#define buttonPin 1 //define the buttonPin

void main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup () ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT);

pullUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {

if (digitalRead (buttonPin) == LOW) { //button is pressed
digitalWrite (buzzerPin, HIGH); //Turn on buzzer
printf ("buzzer turned on >>> \n”);

}

else { //button is released
digitalWrite (buzzerPin, LOW); //Turn off buzzer
printf ("buzzer turned off <<< \n”);

1
The code is exactly the same as when we used a push button switch to control an LED. You can also try using
the PNP transistor to achieve the same results.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.
The list of components and the circuit is similar to the doorbell project. We only need to take the Doorbell
circuit and replace the active buzzer with a passive buzzer.

Code

In this project, our buzzer alarm is controlled by the push button switch. Press the push button switch and the
buzzer will sound. Release the push button switch and the buzzer will stop.

As stated before, it is analogous to our earlier project that controlled an LED ON and OFF.

To control a passive buzzer requires PWM of certain sound frequency.

C Code 6.2.1 Alertor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 06.2.1_Alertor directory of C code.

cd ~/Freenove_Kit/Code/C_Code/06.2.1_Alertor

2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-Im” and “-lpthread”
compiler options need to added here.

gcc Alertor.c -o Alertor -lwiringPi -Im -Ipthread

3. Then run the generated file “Alertor”.

sudo ./Alertor

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <softTone.h>
#include <math.h>

#defline buzzerPin 0 //define the buzzerPin
#tdefine buttonPin 1 //define the buttonPin

void alertor(int pin) {

int x;

double sinVal, toneVal;

for (x=0;x<360;x++) { // frequency of the alertor is consistent with the sine wave
sinVal = sin(x * (M PI / 180)); //Calculate the sine value
toneVal = 2000 + sinVal * 500; //Add the resonant frequency and weighted sine value
softToneWrite (pin, toneVal) ; //output corresponding PWM
delay (1) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

}

void stopAlertor(int pin) {
softToneWrite (pin, 0) ;

}

int main(void)

{

printf ("Program is starting ... \n”);

wiringPiSetup () ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT);
softToneCreate (buzzerPin) ; //set buzzerPin
pullUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if (digitalRead (buttonPin) == LOW) { //button is pressed
alertor (buzzerPin); // turn on buzzer
printf ("alertor turned on >>> \n”);
}
else { //button is released
stopAlertor (buzzerPin); // turn off buzzer

printf ("alertor turned off <<< \n”);

}

return 0;

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). Here
softTone is designed to generate square waves with variable frequency and a duty cycle fixed to 50%, which
is a better choice for controlling the buzzer.

! softToneCreate (buzzeRPin) ; l
In the while loop of the main function, when the push button switch is pressed the subfunction alertor() will
be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine curve.
We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this value
is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite (pin,
toneVal).

void alertor(int pin) {
int x;
double sinVal, toneVal;
for (x=0;x<360;x++) { //The frequency is based on the sine curve
sinVal = sin(x * (M PI / 180));
toneVal = 2000 + sinVal * 500;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

softToneWrite (pin, toneVal) ;
delay (1) ;

If you want to stop the buzzer, just set PWM frequency of the buzzer pin to 0.

void stopAlertor(int pin) {
softToneWrite (pin, 0) ;

The related functions of softTone are described as follows:

This creates a software controlled tone pin.

This updates the tone frequency value on the given pin.

For more details about softTone, please refer to : https://github.com/WiringPi/\WiringPi

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

B vwww.freenove.com D4 support@freenove.com

(Important) Chapter 7 ADC

We have learned how to control the brightness of an LED through PWM and that PWM is not a real analog
signal. In this chapter, we will learn how to read analog values via an ADC Module and convert these analog

values into digital.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of an ADC Module to read the voltage value of a potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x16

GPIO Extension Board & Ribbon Cable x1
— - -
Breadboard x1

Rotary potentiometer x1 | ADC module x1 Resistor 10kQ x2

Ci ADC
A0 _ADS78%0 VvVCC
Bsor

-m e =

A2 SCL
A3 D1
A4 DO
A5 COM

= == o

A6 REF

- = =

0 r A7 Freenove GND

PCF8591

FREENOVE

This product contains only one ADC module, there are two types, PCF8591 and ADS7830. For the projects
described in this tutorial, they function the same. Please build corresponding circuits according to the ADC

module found in your Kit.
ADC module: PCF8591 ADC module: ADS7830

Model diagram Actual Picture Model diagram Actual Picture

- ADC
L_AD _ADSTE%0 vCC
. Hisos

-m . oem =

A2 SCL
A3 D1

PCF8591

A4 DO

A5 COM

A6 REF

- = . =

A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m B4 support@freenove.com www.freenove.com [l

Circuit knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or
binary form consisting of 1s and 0s. The range of our ADC module is 8 bits, that means the resolution is
278=256, so that its range (at 3.3V) will be divided equally to 256 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits
the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

DIGITAL
N

255
254
253
252
251

O N WM

N
ov 3.3V ° ANALOG

Subsection 1: the analog in range of 0V-3.3/256 V corresponds to digital O;
Subsection 2: the analog in range of 3.3 /256 V-2+3.3 /256V corresponds to digital 1;

The resultant analog signal will be divided accordingly.

DAC

The reversing this process requires a DAC, Digital-to-Analog Converter. The digital I/0 port can output high
level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful.
The DAC module PCF8591 has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into
2°=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when
the digital quantity is 128, the output voltage value is 3.3/256 «128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far
in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A
potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact
brush. When the brush moves along the resistor element, there will be a change in the resistance of the
potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The illustration below
represents a linear sliding potentiometer and its electronic symbol on the right.

»

d - 1

1 32 2

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is
connected to the brush that makes contact with the resistive element. In our illustration, when the brush
moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches
the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will
decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values
between pin 1 and 3 and between pin 2 and 3 will be the same.

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of
power. When you slide the brush “pin 3", you can get variable voltage within the range of the power supply.

. R1
Pin 3 10kQ

Rotary potentiometer

Rotary potentiometers and linear potentiometers have the same function; the only difference being the
physical action being a rotational rather than a sliding movement.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

PCF8591

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisition device with four analog
inputs, one analog output and a serial 12C-bus interface. The following table is the pin definition diagram of

PCF8591.
SYMBOL | PIN | DESCRIPTION TOP VIEW
AINO 1
AN 2 Analog inputs (A/D ter) U
nalog inputs converter
AIN2 3 V,
AINO | 1 16| VDD
AIN3 4 ’: :I
A0 5 ANt [2] [15] aourt
Al 6 Hardware address AIN2 E E VREF
A2 7
Vss 8 Negative supply voltage AIN3 [T I E AGND
SDA 9 [2C-bus data input/output AD E EI EXT
SCL 10 | 12C-bus clock input ‘
0SC 11 | Oscillator input/output Al '_-5—_ 1__‘] osc
EXT 12 | external/internal switch for oscillator input A2 E _1—2] SCL
AGND 13 | Analog ground [
Vref 14 | Voltage reference input Vss E E SDA
AOUT 15 | Analog output(D/A converter)
Vdd 16 | Positive supply voltage
For more details about PCF8591, please refer to the datasheet which can be found on the Internet.
ADS7830

The ADS7830 is a single-supply, low-power, 8-bit data acquisition device that features a serial 12C interface
and an 8-channel multiplexer. The following table is the pin definition diagram of ADS7830.

SYMBOL PIN DESCRIPTION TOP VIEW
CHO 1
CH1 2 Analog | N |
t

CH2 3 nalog input channels

(A/D converter)
CH3 4
CH4 5

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

support@freenove.com m

CH5 6
CH6 7
CH7 8
GND 9 Ground
: Internal +2.5V Reference,
REF in/out | 10
External Reference Input
COM 11 Common to Analog Input Channel
AO 12
Hardware address
Al 13
SCL 14 Serial Clock
SDA 15 Serial Sata
+VDD 16 Power Supply, 3.3V Nominal

I2C communication

I2C (Inter-Integrated Circuit) has a two-wire serial communication mode, which can be used to connect a

micro-controller and its peripheral equipment. Devices using 12C communications must be connected to the
serial data line (SDA), and serial clock line (SCL) (called 12C bus). Each device has a unique address which can
be used as a transmitter or receiver to communicate with devices connected via the bus.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com [l

Circuit with ADS7830

Schematic diagram

=
10
kP
16
18
| e
vz
26
28
32
36
(38
40

Rt
X T P © |
XX00000080000
Franaon “Poaooa £5
— 0000 0000 ¢
a0
(2 e
© c >
| > ©20
AT P _ <=8 wegeg d
27000039%200000 2
coaoaaonologooaan ¢
NNOOOO==2nndOO00

ADC

A0

REF
GND

ADS7830

Freenove

=y A1
ey A2
=4 A3
==y A5
=y AB
ey A7

3. 3V
2
i

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

This product contains only one ADC module.

® o o 0 0
® e o 0 0

® © o o o 0 0 0 0 0
® 0 0 0 0 0 0 0
® & 0 0 0 0 0 0 00
® ® 0 0 0 0 0 0 0 0
® ® & 0 o 0 0 0 0 0
® ® & 0 0 0 0 0 00
® ®© @ 0o 0 0 0 0 0 0

REFO)

® e 0 0 0
e o 0o 0 0
® @ 0009 PO WOV I OV

*anNd ISON® &4
*yZ0IdD

00Xy
®0axL
*aND
*AS
®AS

PISIYS UoISUBIX3 OIdO Id A1eqdsey

Video: https://youtu.be/PSUCctu_DgA

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com
https://youtu.be/PSUCctu_DqA

B www.freenove.com

D4 support@freenove.com

Circuit with PCF8591

Schematic diagram

AIN2
=1 AIN3
—{ A0

Vss

1
Freenove
SCL|

[AINO VDD 8—%
PCF8591
=4 AIN1 Aout

10kQ

Vrefi
Agnd
EXT|
OSC|

mga |

I

R2
- 10kQ

3.3V

SDA1
SCLA1

SDA|

REEEBNERE G R

GPI04
GPIO17
GP1027
GP1022
MOSI
MISO
SCLK

' SDAO
GPIO5
GPIO6
GPIO13
GPIO19

5V

TXDO
RXDO
GPIO18
GPI1023
GPIO24
GPI1025
CEO
CE1
SCLO
GPIO12
GPIO16
GP1020
GP1021

GP1026 Raspberry Pi
GPIO Extension Shield
GND

PEBRPPEREPIE

Hardware connection

Raspberry Pi GPIO Extension Shield

Please keep the chip mark consistent to make the chips under right direction and position.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

The 12C interface in Raspberry Pi is disabled by default. You will need to open it manually and enable the [2C
interface as follows:

Type command in the Terminal:

sudo raspi-config

Then open the following dialog box:

4| Raspberry Pi Software Configuration Tool (raspi-config) |

1 System Options Configure system settings
2 Display Options Configure display settings

Interface Options Configure connections to peripherals

4 Performance Options Configure performance settings

5 Localisation Options ConfTigure lamguage and regional settings
6 Advanced Options Configure advanced settings

8 Update Update this tool to the latest wversion
]

About raspi-config Information about this configuration tool

<Select> <Finish=>

Choose “3 Interfacing Options” then “14 12C" then “Yes” and then “Finish” in this order and restart your RPi.
The 12C module will then be started.

Type a command to check whether the I2C module is started:

Ismod | grep i2c

If the 12C module has been started, the following content will be shown. “bcm?2708" refers to the CPU model.
Different models of Raspberry Pi display different contents depending on the CPU installed:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Next, type the command to install I2C-Tools. It is available with the Raspberry Pi OS by default.
sudo apt-get install i2c-tools

I2C device address detection:

i2cdetect -y 1

When you are using the PCF8591 Module, the result should look like this:

pi@raspberrypi:

g 1 2 3

Here, 48 (HEX) is the 12C address of ADC Module (PCF8591).

When you are using ADS, the result should look like this:
pl@raspberrypl: '
B 1 2 3

Here, 4b (HEX) is the 12C address of ADC Module (ADS7830).

For C code for the ADC Device, a custom library needs to be installed.
1. Use cd command to enter folder of the ADC Device library.

cd ~/Freenove_Kit/Libs/C-Libs/ADCDevice

2. Execute command below to install the library.

sh ./build.sh

A successful installation, without error prompts, is shown below:

pi@raspberrypi:

puild completed

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Next, we will execute the code for this project.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 07.1.1_ADC directory of C code.

cd ~/Freenove_Kit/Code/C_Code/07.1.1_ADC

2. Use following command to compile “ADC.cpp” and generate the executable file “ADC".
g++ ADC.cpp -0 ADC -IwiringPi -IADCDevice

3. Then run the generated file “ADC".

sudo ./ADC

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

The following is the code:

1 #include <wiringPi.h>

2 #include <wiringPil2C.h>

3 #include <stdio.h>

4 #include <ADCDevice. hpp>

5

6 ADCDevice *adc; // Define an ADC Device class object

7

8 int main(void) {

9 adc = new ADCDevice() ;

10 printf();

11

12 if (adc—>detectI2C()){ // Detect the pcf8591.

13 delete adc;

14 adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
15 }

16 else if(adc—>detectI2C()) {// Detect the ads7830

17 delete adc;

18 adc = new ADS78300() ; // 1If detected, create an instance of ADS7830

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com

}
else{
printf("No correct 12C address found, \n”
"Please use command ’i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”):
return —1;
}
while (1) {

int adcValue = adc—>analogRead(0); //read analog value of AO pin
float voltage = (float)adcValue / 255.0 % 3.3; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) ;
delay (100) ;

In this code, a custom class library "ADCDevice" is used. It contains the method of utilizing the ADC Module
in this project, through which the ADC Module can easily and quickly be used. In the code, you need to first
create a class pointer adc, and then point to an instantiated object. (Note: An instantiated object is given a
name and created in memory or on disk using the structure described within a class declaration.)

ADCDevice *adc; // Define an ADC Device class object
adc = new ADCDevice() ;
Then use the member function detectlC(addr) in the class to detect the 12C module in the circuit. Different
modules have different I2C addresses. Therefore, according to the different addresses, we can determine what
the ADC module is in the circuit. When the correct module is detected, the pointer adc will point to the address
of the object, and then the previously pointed content will be deleted to free memory. The default address of
ADC module PCF8591 is 0x48, and that of ADC module ADS7830 is 0x4b.
if (adc—>detect12C(0x48)) { // Detect the pcf8591.
delete adc;
adc = new PCF8591() ; // If detected, create an instance of PCF8591.

}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830

delete adc;

adc = new ADS7830() ; // 1If detected, create an instance of ADS7830
1
else{

printf("No correct 12C address found, \n”
“"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);

return —1;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X support@freenove.com www.freenove.com [l

When you have a class object pointed to a specific device, you can get the ADC value of the specific channel
by calling the member function analogRead (chn) in this class
- int adcValue = adc—>analogRead(0); //read analog value of A0 pin

Then according to the formula, the voltage value is calculated and displayed on the Terminal.

float voltage = (float)adcValue / 255.0 % 3.3; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) ;

Reference

This is a base class. All ADC module classes are its derived classes. It has a real function and a virtual
function.

int detectI2C(int addr);
This is a real function, which is used to detect whether the device with given 12C address exists. If it exists,
return 1, otherwise return 0.

virtual int analogRead(int chn) ;
This is a virtual function that reads the ADC value of the specified channel. It is implemented in a derived
class.

These two classes are derived from the ADCDevice class and mainly implement the function
analogRead(chn).

int analogRead(int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For PCF8591, the range of chnis 0, 1, 2, 3. For ADS7830, the range of is 0, 1, 2, 3,4, 5,6, 7.

You can find the source file of this library in the folder below:
~/Freenove_Kit/Libs/C-Libs/ADCDevice/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 8 Potentiometer & LED

Earlier we learned how to use ADC and PWM. In this chapter, we learn to control the brightness of an LED by
using a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer
and map it to duty cycle ratio of the PWM used to control the brightness of an LED. Then you can change the
brightness of an LED by adjusting the potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x17
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Rotary Potentiometer x1 | ADC Module x1 (Only one) 10kQ x2 | 220Q x1 | LED x1

—-a. - -

(_AD
PCF8591 AT
A2
A3 D1
A4 DO
A5 COM
 EEE _REF
A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com .

m X support@freenove.com

Circuit with ADS7830

Schematic diagram

-
(10
K.
(16
Ei-a
22
24
26
28
(32
36
38
40

5V

3.3V

382
XX O
Ll Ay

O

GPIO23
GPI024

QDL
000
o
O

SCLO
GPIO12
GPIO16
GPIO20
GPIO21

026 Raspberry Pi

GPIO Extension Shield

GND

|
[
z
o

Freenove

=y A6
=1 A7

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

-

#0Z0Id9 9Z0Id9®
#910Id9 6101d9*
®IND €LOIdD*
$Z10Id9 90Id9%
®aND SOId9®
*012S ovase
®13) ano®
*03) XIse
®G70Id9 OSIN®
*aNd ISON®
*$Z01dD ENE®
#€70IdD ZZOIdO®
®AND [ZOIdD*
#810Id9 LLOIdD®
0aXy aNo9
#0aXL vOIdD®
*aN9 L10S®
®AS Lyase
®AS ENE®

.s‘.."..'......’

.
L
.
.
.
.
.
.
°
.
.
.
.
.
.
L]
.
B
o
.
.
L
°
®
L
.
K3
.
.
o
L]
.
.
L]

PIBIYS uoISualX3 OIdO Id Aiaqdsey

Video: https://youtu.be/YMEfe9IWUG6I

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com
https://youtu.be/YMEfe9IWU6I

B www.freenove.com

D4 support@freenove.com m

Circuit with PCF8591

Schematic diagram

WW

R3
10kQ

AW

R2

A0

A2

Vss

1
Freenove

N N
w
&N
‘ AINO VDD
PCF8591
w1 AIN1 Aout
w1 AIN2 Vref,
=1 AIN3 Agnd

EXT)
0sC

SDA

10kQ 3
5
-
11
EGiKE
(33
19
w13
AVAYA
‘ 29
LEDE _31_
w £ 3
220Q _3.L

3.3V

SDA1
SCL1
GPIO4
GPIO17
GPI1027
GP1022
MOSI
MISO
SCLK
SDAO
GPIO5
GPIO6
GPIO13
GPIO19

5V
TXDO

RXDO
GPIO18

GPIO23

GP1024
GPI1025
CEO
CE1
SCLO
GPIO12
GPIO16
GPIO20]
GP1021

GPIO26 Raspberry Pi
GPIO Extension Shield
GND

PEPREPRRFPREE

Hardware connection

Raspberry Pi GPIO Extension Shield

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Code

C Code 8.1.1 Softlight

If you did not configure 12C, please refer to Chapter 7. If you did, please move on.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 08.1.1_Softlight directory of C code.

2. Use following command to compile “Softlight.cpp” and generate executable file “Softlight”.

3. Then run the generated file “Softlight”.

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness
of LED will be changed.

The following is the code:

#include <wiringPi.h>
#include <stdio.h>
#tinclude <softPwm.h>
#include <ADCDevice. hpp>

f#define ledPin 0

ADCDevice *adc; // Define an ADC Device class object

int main(void) {
adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory

adc = new PCF8591(); // If detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(); // If detected, create an instance of ADS7830
}
else{

printf("No correct 12C address found, \n”

"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”

"Program Exit. \n”);:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com IO

return —1;

}

wiringPiSetup() :

softPwmCreate (1edPin, 0, 100) :

while (1) {
int adcValue = adc—>analogRead(0) ; //read analog value of A0 pin
softPwmWrite (ledPin, adcValuek00/255) // Mapping to PWM duty cycle

float voltage = (float)adcValue / 255.0 % 3.3; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) ;
delay (30) :

!

return 0;

In the code, read the ADC value of potentiometer and map it to the duty cycle of PWM to control LED
brightness.
. int adcValue = adc—>analogRead(0) ; //read analog value of AO pin

softPwmWrite (ledPin, adcValuek!00/255) ; // Mapping to PWM duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 9 Potentiometer & RGBLED

In this chapter, we will use 3 potentiometers to control the brightness of 3 LEDs of RGBLED to create multiple
colors.

Project 9.1 Colorful Light

In this project, 3 potentiometers are used to control the RGB LED and in principle it is the same as with the
Soft Light. project. Namely, read the voltage value of the potentiometer and then convert it to PWM used to
control LED brightness. Difference is that the previous soft light project needed only one LED while this one
required (3) RGB LEDs.

Component List

Raspberry Pi x1 Jumper Wires M/M x17

GPIO Extension Board & Ribbon Cable x1

Breadboard x1
Rotary potentiometer x3 | ADC module x1 10kQ x2 | 220Q x3 | RGB
LEDx1

{JAD ADC \/CC
LADST830

AT y - SDA

A2 SCL

A3 D1

PCF8591

A4 DO

A5 COM
A6 EE
A7 Freenove GND

FREENOVE

—Q}

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

™
o
—

support@freenove.com [l

s §
S 3
] (]
> > IR P 20.® e e e e R
o o RI® >, A4 . . - e
C L - * >)
() m ocﬁ'oo “” S el .
(O] Q ..
@ = oo T | 439 IR
L L B .
= 80268&&&&&&&& @ 5566 sesne T g
il j "o
ml mm8%M%mBm26mm < ml TR s 00 00 Y ”-” “““n” ””
=1 R200000000000 &3 a o 1 Bheea Tl (-5 4 EEEEER Y
wn FXoaooao Naooo W% = o o || o ——— o “ 1'-
@ |Wv [OJOXOXO] [OIOJOIO) m c L o . s s 0 0 s
a5 © . 4 b
% mm w > ® ® RIOIP D@ *>e . . 0 00 ””
_ W R.wG __ wn * * ol it il *e . "0 00 .0
1_|1 P NN nénuuno_.v_._A > e ® A2 28 A 'oc oEE———
o teNN Voo - . . o P Ip iy
$5000053%200000 2 3] 3 | BEEXXIX
ooaonnQZoganonnn ¢ = 2 .o
NNOOOOZ=Z2nnNnOOOVO < 2 g oJa A ELA S e e .
(@) . o0 00 . Py
357—1350&A Lﬂ (&) . e 00 00 .. - e
| M i 9 = . .
© . — . loe
(O] oy ..
P . . L
[Y o
g . L
- L ..
— % LI . m " ..
Y— LR = . P
gl g ¢ L &3¢ b ES ¢ = .
S =] =3 . .
’ £ |23 | 28 ® (@) . o
e ks EE AR | : 3
EERRE 1T =3 3 3 Wl | B : ..
9] m m + *» * (e} .)
? 2 g o i d #0201d9 970IdD* I3 > » = . .o
csyosoen 3 [*9101d5 6101dD* ¥ .o S . o
22T e o i *AND E£L0IdO* &4 »i® L *ZL0IdD 90149* ¢ e
TTTT1 x| x| x 5 L #7101dD 901d9* |3 .o > (I *aND 501dD® .o
AN % . ¢ .o = R *0135
5 m > ® * [. - e
. c 0 . m e 7, . ..
(] . . .o % . ..
. . ..
|_| 5 2 : sof sl Il B . —.
= s = , = (] . . == - *
3 =| =| = = bl f fal
o0 L L L o 4 2 ¢
> o .
N~ — . had .
= wn — ~ . f= .
(73] s
5 a G G G 5 . g
¢ < = ol z z w o -
= 2 PI31YS UOISUSIXT OIdO Id Auaqdsey
m le =) ! m pIaIys uoisualx3 OIdO Id Auiaqdsey W
() fp— 8 o) (e} EELRRRRERRRR R R RN RRRRRRNnT,
o W © O EEERRRERR RN RN R R RN R R R R RRRRREERRRRRRE, -w
Y— [&]
. = (]
3 + ® s z
[— @©
=1
W > € = o
© e ° =
el S © o
B O wn T =

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Circuit with PCF8591

Schematic diagram

3.3V

32 AINO Vdd}—1&

AINT Aout}—12-)
AIN2 Vref}—14

12
:
m“-JO'\U'\|-ThNI\Jd

AIN3 AGND|—13 : R
AQ EXTIL’—“' 33V 5V
Al OsClLl i 43 SDAT TXDO -8
"‘l A2 scLf1o S 5150 RXDO 10—
Vss SDA|-2 LI1GPIO4 GPIO18}-12—
'.”—\/\/\/\,L—||| pCFgso] 111Gpio17 GPI023 |16
131GpI027 GPI024 |18~
|1 151GPI022 GPI025}-22—
"‘l 19 Imosi CEO|-24-
N 211IMIso CE1}26
M:||| 231SCLK SCLO 28—
o S ~2L1SDAO GPIO12}32—
YAV Y — 291GPIO5 GPI10O16|36—
Jx S 311GPI06 GPI020}-38—
s|,—|>|—w\/\ 33 1GpPI013 GPI021 40
. o R -321GPI0O19
i P AW, ~3L{GPI026 Raspherry Pi
GPIO Extension Shield
GND

TRl

Raspberry Pi GPIO Extension Shield

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of C code.

cd ~/Freenove_Kit/Code/C_Code/09.1.1_ColorfulSoftlight

2. Use following command to compile "ColorfulSoftlight.cpp” and generate executable file
"ColorfulSoftlight".

g++ ColorfulSoftlight.cpp -0 ColorfulSoftlight -lwiringPi -IADCDevice

3. Then run the generated file "ColorfulSoftlight"”.

sudo ./ColorfulSoftlight

After the program is executed, rotate one of the potentiometers, then the color of RGB LED will change. The
Terminal window will display the ADC value of each potentiometer.

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <softPwm.h>

4 #include <ADCDevice. hpp>

5

6 #define ledRedPin 3 //define 3 pins for RGBLED
7 #define ledGreenPin 2

8 #define ledBluePin 0

9

10 ADCDevice *adc; // Define an ADC Device class object
11

12 int main(void) {

13 adc = new ADCDevice() ;

14 printf("Program is starting ... \n”);

15

16 if (adc—>detectI2C(M)A // Detect the pcf8591.
17 delete adc; // Free previously pointed memory

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

adc = new PCF8591(): // 1f detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830

delete adc; // Free previously pointed memory
adc = new ADS7830() : // 1f detected, create an instance of ADS7830.
}
else{
printf("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);
return —1;
1
wiringPiSetup() ;
softPwmCreate (1edRedPin, 0, 100) ; //creat 3 PMW output pins for RGBLED

softPwmCreate (1edGreenPin, 0, 100) :
softPwmCreate (1edBluePin, 0, 100) ;
while (1) {
int val Red = adc—>analogRead(0): //read analog value of 3 potentiometers
int val Green = adc—>analogRead(l);
int val Blue = adc—>analogRead(?) ;
softPwmWrite (ledRedPin, val Redk100/255); //map the read value of potentiometers
into PWM value and output it
softPwmWrite (ledGreenPin, val Greenk100/255) ;
softPwmWrite (ledBluePin, val Bluek100/255) ;
//print out the read ADC value
printf("ADC value val Red: %d ,\tval Green: %d ,\tval Blue: %d
\n”, val_Red, val Green, val Blue);
delay (100) ;
}

return 0;

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control
the 3 LED elements to vary the color of their respective RGB LED.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com oK

Chapter 10 Photoresistor & LED

In this chapter, we will learn how to use a photoresistor to make an automatic dimming nightlight.

Project 10.1 NightLamp

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic
to make a nightlight with the following function. When the ambient light is less (darker environment), the LED
will automatically become brighter to compensate and when the ambient light is greater (brighter
environment) the LED will automatically dim to compensate.

Component List

Raspberry Pi x1 Jumper Wires M/M x15

GPIO Extension Board & Ribbon Cable x1
—-- - -
Breadboard x1

Photoresistor x1 ADC module x1 10kQ x3 220Q x1 LED x1

ADC
ADST830
LAY ! Bsoa
A2 SCL
A3 D1

PCF8591

A4 DO

A5 COM
EEEE
A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Component knowledge

Photoresistor

A Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with
respect to receiving luminosity (light) on the component's light sensitive surface. A Photoresistor’s resistance
value will change in proportion to the ambient light detected. With this characteristic, we can use a
Photoresistor to detect light intensity. The Photoresistor and its electronic symbol are as follows.

1T 2

The circuit below is used to detect the change of a Photoresistor’s resistance value:

R2
10kQ R1
Pin
Pin
R1 R2

In the above circuit, when a Photoresistor’s resistance vale changes due to a change in light intensity, the
voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can
be obtained by measuring this voltage.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

109

B www.freenove.com DX support@freenove.com

Circuit with ADS7830

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin

of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

3.3V
3.3V ’
J 33V 5V
R4 A0 vee
10kQ M 3 ISDA1 TXDO =8
Rl =il S1scL1 RXDO -0
i - —LIGPIO4 GPIO18 12~
M GPIO17 GP1023 16
o1z SR 131GPI027 GPI1024 |18
e er -124GPI022 GPI025 22—
] reenove _‘L& MOSI CEO _24_
RS 211MIso CE1 |28~
-23.1SCLK SCLO |28~
2L 1SDAO GPIO12}32
29 1GPIO5 GPIO16 35—
311GPIO6 GP1020}-38_
33 1GPIO13 GPI1021 140
L - -32.1GPI019
- - -3L1GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Video:

https://youtu.be/r6p3zhXsyko

- e o 0 e o 0o 0o 0 . o LI o e
- o e o o o e o 0o 0 0 L] o e o 0o 0 o
= ©

[L

- (]

- ~ ® o 9 o 00 ® o 0o 0 0 0
= o ® o 0 0 0 0 ® o 0o 0 0 o
- g e e e v o e 0o 0 00
— [o o . ® o 0 0 0 o
- * ggg{ ® o 0o 0 00
- w

& o i

- % _____ gﬁg e o 0o 0 0 0
= & 805 @ e 00 0 0 0
= e o o 0 @ @ o 0 0 0 0 0
- ? o o - ® o 0 0 0 00
- B - e ® o 0o 0 0 0
- Q

- (7]

-]

- 14

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/r6p3zhXsyko

X support@freenove.com

www.freenove.com [l

Circuit with PCF8591

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin
of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

AW\~
R4
R3 10kQ 3.3V 5V
- AINO_ o VDDI—® IOkQ“ 3 SDA1 TXDO/|
—t AIN1 Aouth—= S SCL1 RXDO
— ez vref —L1GPIO4 GPIO18]
—ans Agna:—“u 11GPIO17 GPIO23
A0 ext} A31GPI027 GP1024
o—tni__ osci— 21GPI022 GPIO25
. Feeney 9 IMosI CEO
Pl soA 21IMISO CE1|
Vi 231scLK SCLO!
5 2L1SDAO GPIO12]
. LED1 -22.1GPI05 GPI016!
- -2311GPIO6 GPI020
-331GPI013 GP1021/
%GPIO&
- GP1026 Raspberry Pi

R1
220Q

GPIO Extension Shield

GND

PEPRERRREPIER

Raspberry Pi GPIO Extension Shield

Hardware connection

Y #GPIO4

'Y GND
3 «GPI017 GPIO18e T

LY #GPI022 GPIO23e Y

O #GPI027
Y @3V3

) «GPIO6 GPIO12e T

T «GPIOS

e o 0 0 0 e o oo e o 0 0 0 . . °
. oo 0 0 0 o 0 0 0

e e o .] JUL ¢ o ¢ o o e o 0
U . . . i'@i.'.... e o o
e e [d ® ® ® o o 0 0 0 e o o
coxdAamMms (=] v

QQZS =2 ® o o 9 0 0 0 0 0 o ° o o
|>_<§UE o o e e o 0 0 o o o

(L]

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com KNI

Code

The code used in this project is identical with what was used in the last chapter.

C Code 10.1.1 Nightlamp

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 10.1.1_Nightlamp directory of C code.

2. Use following command to compile “Nightlamp.cpp” and generate executable file “Nightlamp”.

3. Then run the generated file “Nightlamp”.

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module AO pin and the converted digital quantity.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#tinclude <softPwm.h>
#include <ADCDevice. hpp>

f#define ledPin 0

ADCDevice *adc; // Define an ADC Device class object

int main(void) {
adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory

adc = new PCF8591(); // If detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS7830(); // If detected, create an instance of ADS7830
}
else{

printf("No correct 12C address found, \n”

"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”

"Program Exit. \n”);:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

return —1;

}

wiringPiSetup() :

softPwmCreate (1edPin, 0, 100) :

while (1) {
int value = adc—>analogRead(0); //read analog value of A0 pin
softPwmWrite (1edPin, valuex100/255) ;
float voltage = (float)value / 255.0 % 3.3; // calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, value, voltage);
delay (100) ;

1

return 0;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com RN

Chapter 11 Thermistor

In this chapter, we will learn about Thermistors which are another kind of Resistor.

Project 11.1 Thermometer

A Thermistor is a type of Resistor whose resistance value is dependent on temperature and changes in
temperature. Therefore, we can take advantage of this characteristic to make a Thermometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x14

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Thermistor x1 ADC module x1 Resistor 10kQ x3

{JAD ADC \/CC
. ADS7830

PCF8591 s mEE
A2 SCL

A3 D1
A4 DO
A5 COM
 EEI _REF
A7 Fr;en;m CND

FREENOVE

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the
Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect
temperature intensity. A Thermistor and its electronic symbol are shown below.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

The relationship between resistance value and temperature of a thermistor is:
Rt=R+EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.
For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.
The circuit connection method of the Thermistor is similar to photoresistor, as the following:

5V

R2
10kQ

Pin AO

R1

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then
we can use the formula to obtain the temperature value.
Therefore, the temperature formula can be derived as:

T2 = 1/(1/T1 + In(Rt/R)/B)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [NES

Circuit with ADS7830

The circuit of this project is similar to the one in last chapter. The only difference is that the Photoresistor is
replaced by the Thermistor.
Schematic diagram

3. BL
3.3V .
J 3.3V 5V
R4 A0 vce
10kQ il 3 ISDA1 TXDO }=3—
i cor S 1SCL1 RXDO O
1 ol— —LdGPIO4 GPIO18 12~
g P ol L e GPIOA7 GP1023 16
- comf— =atGPI027 GP1024 18
—re rerl— =124GPIO22 GPI025 22—
s 19 Imosl CEO0}24—
21Imiso CE1 ke
231scLk SCLO K28~
2L1sSDA0 GPIO12}32
291GPI05 GPI016 |36
—_ 3L1GPIOs GPI020 }-38—
= 33IGPIO13 GPI021}40_
L %GPIO&
- GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

-~ o O oo 0 0 @
-

- =

— (7]

- e o e ° . oo o0 e oo 000 0 e e o000 0 00
= o o ° ° oo o @ oo 0o o0 00 0@ e o 0000 00
= 2 L2800 ® 2880 oo e 000000 e o 0000 00
u 2 NN S A g gq—Ng 99099%9 EEEEEEE]
B le.l EE g (C) Uggg o o BIIESCRIES e o0 00000
— o [CICINT) [CICIT) 3 %s

= o 8 o2 :)

- IT) (=} 8 ©0000%aa QESUUg?g e e 0000 00
= = 32 E % %335 85886558 EEEEEEREEK]
- 28e e XERXXES oo 0 00 0 & o e oo 0000 0 0
- ? o e . . N o o @ . e e . e e o000 00
— 8 o' . . oo o = - e e o000 0 00
- o

- (/]

- ©

- a4 oo e o e oo o o @
— . Y o e o e o ®

Thermistor has longer pins than the one shown in circuit.

Video: https://youtu.be/spOalxanNMc

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/spOaIxanNMc

X support@freenove.com

www.freenove.com [l

Circuit with PCF8591

The circuit of this project is similar to the one in the last chapter. The only difference is that the Photoresistor
is replaced by the Thermistor.

Schematic diagram

B3 BL 3 SL
i , R2 |
o !fgkn é o 3.3V 5V
~=3 AINO VDD :
S W § 3 I1SDA1 TXDO }—3—
A s vref S 1SCL1 RXDO O
N S | L1GPI04 GPIO18 |12~
o eI JtlGpiol7 GPIO23[H6-
a1 oso— A31GPI027 GPI024 |18
i TS -121GPI022 GP1025}22—
' - soA 19Imos| CEO}ed-
211IMISO CE1}26
231scLK SCLO}28-
L 2L1SDAD GPIO12 |32~
= 291GPI05 GPIO16|36~
S11GPIos GPI1020 |38~
-331GPI013 GPI021}40_
%\GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

- o (IR e o 0 0o 0
N o

- =

- ()

- c e o 0 L ® ® 0 0 0 0 0 0
— o o e 0 ° ® o 0o 0 0 0 0 0
: 12 2ese o ® ® 0 0 0 0 0 0
- c amns

- [ZaNa (o] ® o 0o 0 0 0 0 0
- - [eX=]

= x O == ® ®o 0o 0 0 0 0 @
- w o. o, g

- o (GG n

= = ~No &

- o o ©

- IT) S0 K2 _aoa2080000 ® o 0o 0 0 0 0 0
- — Q- a. o ® o 0 0 0 0 0 0
- o QO

- ®® . ® o 0 0 0 0 0 0
- ? o e ° ® o 00 0 0 0 0
- [

= o LI . e o 00 0 0 0 0
- Q.

- (]

- ©

— o LIRS e o o 0 0
= LI o 0 0 0

Thermistor has longer pins than the one shown in circuit.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project code, the ADC value still needs to be read, but the difference here is that a specific formula is
used to calculate the temperature value.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 11.1.1_Thermometer directory of C code.

cd ~/Freenove Kit/Code/C_Code/11.1.1 Thermometer

2 Use following command to compile “Thermometer.cpp” and generate executable file “Thermometer”.
g++ Thermometer.cpp -0 Thermometer -lwiringPi -IADCDevice

3 Then run the generated file “Thermometer”.

sudo ./Thermometer

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb
for a brief time, you should see that the temperature value increases.

]
il
—

105
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10

e I e R e R e e e e e e el e

The following is the code:

#tinclude <wiringPi.h>
2 #include <stdio.h>
3 #include <math.h>
4 #include <ADCDevice. hpp>
5
6 ADCDevice *adc; // Define an ADC Device class object
7
8 int main(void) {
9 adc = new ADCDevice() ;
10 printf("Program is starting ... \n”);

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

if (adc—>detect12C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591(): // 1f detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830() : // 1f detected, create an instance of ADS7830.
}
else{
printf("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”):
return —1;
1
printf ("Program is starting ... \n”);
while (1) {
int adcValue = adc—>analogRead(0); //read analog value AO pin
float voltage = (float)adcValue / 255.0 % 3.3; // calculate voltage

float Rt = 10 * voltage / (3.3 — voltage); //calculate resistance value of thermistor
float tempK = [/(1/(273. 15 + 25) + log(Rt/10)/3950.0);//calculate temperature (Kelvin)
float tempC = tempK —273.15; //calculate temperature (Celsius)
printf ("ADC value : %d ,\tVoltage : %. 2fV,

\tTemperature : % 2fC\n”, adcValue, voltage, tempC) ;
delay (100) ;

}

return 0;

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [ENES

Chapter 12 Joystick

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which
are electronic modules that work on the same principle as the Rotary Potentiometer.

Project 12.1 Joystick

In this project, we will read the output data of a joystick and display it to the Terminal screen.

Component List

Raspberry Pi x1 Jumper x18

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Joystick x1 ADC module x1 Resistor

= 10kQ x3
Ao Aé;?;g , Vee
* EEE gsm

A2 SCL
A3 D1

PCF8591

A4 DO

A5 COM

A6 REF

- = =

A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

Joystick

A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as
they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the
same time (usually used to control direction on a two dimensional plane). And it also has a third direction
capability by pressing down (Z axis/direction).

GND
+5V
VRX
VRY
SW

Joystick

o oo o |

This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees of
each other, placed in such a manner as to detect shifts in direction in two directions simultaneously and with
a Push Button Switch in the “vertical” axis, which can detect when a User presses on the Joystick.

+5V W

o L

When the Joystick data is read, there are some differences between the axes: data of X and Y axes is analog,
which needs to use the ADC. The data of the Z axis is digital, so you can directly use the GPIO to read this
data or you have the option to use the ADC to read this.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Circuit with ADS7830

Schematic diagram

3.3V

R2

10kQ

Joystick

SW

GPIO18

VRY

VRX

VCC
GND

'—'ll\aw“vl

AE
|

A0
A1l
A2

A3 D1
ADS7830
A4 D

A5

A7

6 REF
Freenove
GND

VCC
SDA
SCL,|

ADC

| |

COMyp—=

(GP1026 Raspberry Pi
GPIO Extension Shield
GND

39
3.3V 5V
SDA1 TXDO }=8—
/—;L SCL1 RXDO {19
—L1GPI04 GPIO18
~A11GPI017 GPI023 16
131GPI1027 GP1024 |18
121GPI1022 GPI1025 .22
19 Imos| CE0}24-
21IMIso CE1}25
23.1sCLK scLok28.
2L1SDA0 GPIO12}32
29 1GPIO5 GPIO16}-36~
311GPIos GPI1020}38
-331GPI013 GPI021 40
-321GPI019
rd

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

Pttt et

wO
) ¢

LI COoA

Video: https://youtu.be/qjP3HpbPJTM

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/qjP3HpbPJTM

X support@freenove.com

www.freenove.com [l

Circuit with PCF8591

Schematic diagram

3.3V
R2 |
Ram 10kQ 3.3V 5V
3.3V 0 3 {sDA1 TXDO -8~
S.1scL1 RXDO O
R4 —L1GPI04 GPI018 12« Gpiorg
. 10kQ _ A11GPI017 GP1023 16
Joystick L2 -A31GPI1027 GP1024 |18
sw =~ "crio1d -121GPI1022 GP1025}22.
VRY [Ao VDD 19 1mos] CE0}24-
PCF8591 | _2_]_ MISO CE1 _25_
VRX 3 3 AINA Aout
vee | Sodame vie— -231SCLK SCLO 28—
GND |71 —lans Agnd— -2L1SDAO GPIO12 }32—
o EXT:1—||| 29 1GpPI05 GPIO16 36—
' osoi— 311GPIO6 GPI020}-38
] R 23 1GPIO13 GPI021 }40.
. sOA 2321GPIO19
* ~3L1GPI026 Raspberry Pi
— GPIO Extension Shield
GND

B o
-
<
= K
bl c
-
L
- {4
=y o

5]
= I3
- B
= o
- N
.y O
= o
- B
- -
- B
] o
- Q
- B3
= B
]

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project’s code, we will read the ADC values of X and Y axes of the Joystick, and read digital quality of
the Z axis, then display these out in Terminal.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 12.1.1_Joystick directory of C code.

cd ~/Freenove_Kit/Code/C_Code/12.1.1_Joystick

2. Use following command to compile "Joystick.cop” and generate executable file "Joystick".
g++ Joystick.cpp -0 Joystick -lwiringPi -IADCDevice

3. Then run the generated file "Joystick".

sudo ./Joystick

After the program is executed, the terminal window will display the data of 3 axes X, Y and Z. Shifting (moving)
the Joystick or pressing it down will make the data change.

1
1
1
1
1
1
1
1
q

The flowing is the code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <softPwm. h>

4 #include <ADCDevice. hpp>

5

6 #tdefine Z Pin 1 //define pin for axis Z
7

8 ADCDevice #*adc; // Define an ADC Device class object
9

10 int main(void) {

11 adc = new ADCDevice() ;

12 printf("Program is starting ... \n”);
13

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

if (ade—>detectI2C(0x48)) { // Detect the pef8591.

delete adc; // Free previously pointed memory

adc = new PCF8591(): // 1f detected, create an instance of PCF8591.
}
else if(adc=>detectI2C(0x4b)) {// Detect the ads7830

delete adc; // Free previously pointed memory
adc = new ADS7830() : // 1f detected, create an instance of ADS7830.
}
else{
printf("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”):
return —1;
}
wiringPiSetup() ;
pinMode (Z_Pin, INPUT) ; //set Z_Pin as input pin and pull-up mode
pullUpDnControl (Z Pin, PUD_UP) ;
while (1) {
int val Z = digitalRead(Z Pin); //read digital value of axis Z
int val Y = adc—>analogRead(0) ; //read analog value of axis X and Y
int val X = adc—>analogRead (1) ;
printf("val X: %d ,\tval Y: %d ,\tval Z: %d \n”,val X, val Y,val 7);
delay (100) ;
}
return 0;

In the code, configure Z_Pin to pull-up input mode. In the while loop of the main function, use analogRead
() to read the value of axes X and Y and use digitalRead () to read the value of axis Z, then display them.

while (1) {
int val Z = digitalRead(Z Pin); //read digital value of axis Z
int val Y = adc—>analogRead(0) ; //read analog value of axis X and Y

int val X = adc—>analogRead(l);
printf("val X: %d ,\tval Y: %d ,\tval Z: %d \n”,val X, val Y,val 7);
delay (100) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [EVAS

Chapter 13 Motor & Driver

In this chapter, we will learn about DC Motors and DC Motor Drivers and how to control the speed and

direction of a DC Motor.

Project 13.1 Control a DC Motor with a Potentiometer

In this project, a potentiometer will be used to control a DC Motor. When the Potentiometer is at the midpoint
position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of this midpoint,
the DC Motor speed increases until it reached the endpoint where the DC Motor achieves its maximum speed.
When the Potentiometer is turned “Left” of the midpoint the DC Motor will ROTATE in one direction and when

turned “Right” the DC Motor will ROTATE in the opposite direction.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wires x23

GPIO Extension Board & Ribbon Cable x1
—-a. - -

Breadboard x1
Breadboard Power Module x1

9V Battery (you provide) & 9V Battery Cable

5V OFF 3.3V
0000
+ -
Rotary DC Motor x1 10kQ x2 | ADC Module x1 293D
Potentiometer x1 J. IC Chip
PCF8591

[

FREENOVE =
A7 Freenove GND

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Component knowledge

Breadboard Power Module

Breadboard Power Module is an independent circuit board, which can provide independent 5V or 3.3V power
to the breadboard when building circuits. It also has built-in power protection to avoid damaging your RPi
module. The schematic diagram below identifies the important features of this Power Module:

Power LED

Power Switch

[Power Jack USB Output Port }

[Output voltage selection Output voltage selection }

- .
S 5V OFF 3.3\
SuEm mEE QOO0

[Output port for power : St Output port for power]

Here is an acceptable connection between Breadboard Power Module and Breadboard using a 9V battery
and the provided power harness:

5V OFF 3.3V
0000

OEEE NEN

an ® e 0006000000
© e 000000000
ooooooovooo
AS AE'E @ e 000000000
® e 000000000

SV OFF 3.3V
CI00

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [

DC Motor

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major
parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the
Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and
it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only
use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more
electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply
electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with
two terminal pins.

o

o]

1 2
When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of
the power supply, the DC Motor will rotate in opposite direction. This is important to note.

" "
” ?
+ - -+

L293D

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC
Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered
later in this Tutorial).

1 L Enable 1 +V 16
2 2111 In4}>
3 31 out 1 out4 P4
4 4l ov ov B3
5 21 ov ov P2
6 L1 out2 out 3 1L
7 Z1n2 In3H2
8 L +Vmotor Enable 2 =N
293D

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

128 support@freenove.com www.freenove.com [l

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2,7,10,15 Channel x digital signal input pin

Out x 3,6,11, 14 Channel x output pin, input high or low level according to In x pin, gets
connected to +Vmotor or OV

Enablel 1 Channel 1 and Channel 2 enable pin, high level enable

Enable2 9 Channel 3 and Channel 4 enable pin, high level enable

ov 4,5,12,13 Power Cathode (GND)

+V 16 Positive Electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive Electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see the datasheet for this IC Chip.

When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through
the PWM, However the motor then can only rotate in one direction.

L293D Pin Out)—

Motor <M>

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other
channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals
are exchanged, not only controls the speed of motor, but also can control the direction of the motor.

L293D Pin Out1 L293D Pin Out1

GND

GND |L293D Pin Out 2

[L293D Pin Out 2

In practical use the motor is usually connected to channel 1 and by outputting different levels to in1 and in2
to control the rotational direction of the motor, and output to the PWM wave to Enablel port to control the
motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to in3
and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control the
motor’s rotational speed.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

129

B www.freenove.com DX support@freenove.com

Circuit with ADS7830

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’'s power or an external power supply, which should share a

commaon groun

d with RPI.

Schematic diagram
3.3V 3.3V
I |
3.3V 5V
il el 3 ISDA1 TXDO }—8—
—t sel 2.1SCL1 RXDO 10
— a3 - - —LIGPIO4 GPIO18}12-~
—]as 275750 ool 1 iGpPio17 GPI023 |16
ot comb— 13 1GP1027 GP1024 18
—ne REFf— = N 151GPI1022 GPI025 22—
. FreenoveGND_)__ -J-9—'MOS| CEOw-ZA'—
L233D 21IMISO CE1 e
~5| Enable 2 +Vmotor g -Zlggk}é GPSI(%%(Z)-ZB_
==1In3 In2 -Z-L' ‘-32—
L out 3 out 2 |- ’ 29.1GPI05 GPI016 |36~
11—21 oV oV %1 S11GPIO6 GPI1020 |38
-5 ov ov 2|1 -334GPIO13 GPI021 40
2| out4 out1ls 1 ~321GPIO19
o m 75| In4 In113 -3L1GPI026 Raspberry Pi
16| *V Enable 175 GPIO Extension Shield
1 GND
5V
L l
3 3 . — —
] j —
Ve 33V
GND T T GND
__—__ BreadBoardPower

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

R LR LR R R E R R R R R ERLE]

Raspberry Pi GPIO E ion Shield

#GPIO19 GPIO16w
#GP1026 GPIO20w
GN

=]

seepg peees

|

7 N}

F/M Jumper Wire x2

A4

Position to Change the
Motor’s Supply Voltage
(3.3V or 5v)

Change the Jumper

S

/

Select OFF

Press power switch when using.

Video: https://youtu.be/d5IRMTDK-wg

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/d5lRMTDK-wg

131

B www.freenove.com DX support@freenove.com

Circuit with PCF8591

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’'s power or an external power supply, which should share a
common ground with RPi.

Schematic diagram
3.3V
LJAINO vdd |18 —
—2AINT Aoutf—=- | - | |
~32JAIN2 Vref}-14 10kQ) 10kQ
—2 AAIN3 AGND 2 3 33V 5V
Z AO EXT ﬁ || Py 2 SDA1 TXDO =8~
Al 0oSsC}—— SCLA1 RXDO 10
71 scLl10 LIGPIO4 GPIO18}-12—
8 lvss spAl-2 111Gpi017 GP1023 16—
.. PCFE59T 13 1GPI1027 GP1024 |18
- | 15 1GPI022 GPI025 }-22—
- X 19 Imosi| CEO0}24—
L293D WARIVIEYS CE1 |25
~5| Enable 2 +Vmotor |g -2-3—28}55 GPSIgI‘I_g 28
<~ In3 In2 -ZL -32—
o out3 out2 2 : -291GPIO5 GPIO16/-36—
1 ov oV S11GPI06 GP1020 38—
1 ov ov 1511 331GPIO13 GPI021 |40
.3 14| Out4 Out 13 —a-i-GPIO19
=T g In4 In135 -3L1GPIO26 Raspberry Pi
16V Enable 1|7 GPIO Extension Shield
1 GND
ol 3. 3V
—-.. l
3 . i ——
, 1 —
5\!% —-33v
GND T T GND
= BreadBoardPower

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO E ion Shield

se e

A B LT

se e

~

Change the Jumper
Position to Change the
Motor’s Supply Voltage
(3.3V or 5v)

w
CCO0 mmr mmE Q< 00CD
A= 2 310 AS Z00 2 AcEHH0AS
H .

F/M Jumper Wire x2

se v e
ses e

[The Power Switch

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In code for this project, first read the ADC value and then control the rotation direction and speed of the DC
Motor according to the value of the ADC.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 13.1.1_Motor directory of the C code.

cd ~/Freenove_ Kit/Code/C_Code/13.1.1_Motor

2. Use the following command to compile “Motor.cpp” and generate the executable file “Motor”.

g++ Motor.cpp -0 Motor -lwiringPi -IADCDevice

3. Then run the generated file "Motor”.

sudo ./Motor

After the program is executed, you can use the Potentiometer to control the DC Motor. When the
Potentiometer is at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in
either direction of this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC
Motor achieves its maximum speed. When the Potentiometer is turned “Left” of the midpoint the DC Motor
will ROTATE in one direction and when turned “Right” the DC Motor will ROTATE in the opposite direction.
You will also see the ADC value of the potentiometer displayed in the Terminal with the motor direction and

The following is the code:

#tinclude <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#include <math. h>
#include <stdlib. h>
#tinclude <ADCDevice. hpp>

~N O O1 &~ W N

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

ttdefine motorPinl 2 //define the pin connected to L293D
fdefine motorPin2 0
fidefine enablePin 3

ADCDevice *adc; // Define an ADC Device class object

//Map function: map the value from a range to another range
long map(long value, long fromLow, long fromHigh, long tolLow, long toHigh) {
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow;
}
//motor function: determine the direction and speed of the motor according to the ADC
void motor(int ADC) {
int value = ADC —128;
if (value>0) {
digitalWrite(motorPinl, HIGH) ;
digitalWrite (motorPin2, LOW) :
printf(“turn Forward...\n”):
1
else if (value<0) {
digitalWrite(motorPinl, LOW) :
digitalWrite(motorPin2, HIGH) :
printf(“turn Back...\n”):

1

else {
digitalWrite(motorPinl, LOW) :
digitalWrite(motorPin2, LOW) :
printf ("VMotor Stop...\n”):

1

softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 100)) ;

printf("The PWM duty cycle is %d%%\n”, abs(value)*100/127) ;//print the PMW duty cycle
}
int main(void) {

adc = new ADCDevice();

printf("Program is starting ... \n”);

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591(); // If detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS7830(); // If detected, create an instance of ADS7830
}
else{

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

printf("No correct 12C address found, \n”
"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”):
return —1;

}

wiringPiSetup() ;

pinMode (enablePin, OUTPUT) ; //set mode for the pin

pinMode (motorPinl, OUTPUT) ;

pinMode (motorPin2, OUTPUT) ;

softPwmCreate (enablePin, 0, 100);//define PMW pin

while (1) {
int value = adc—>analogRead(0); //read analog value of A0 pin
printf ("ADC value : %d \n”, value) ;
motor (value) ; //make the motor rotate with speed(analog value of A0 pin)
delay (100) ;

1

return 0;

Now that we have familiarity with reading ADC values, let’s learn the subfunction void motor (int ADC): first,
compare the ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPin1 outputs high level and motoRPin2 outputs low level to control the DC Motor to run in the “Forward”
Rotational Direction. When the current ADC value is lower, motoRPinl outputs low level and motoRPin2
outputs high level to control the DC Motor to run in the “Reverse” Rotational Direction. When the ADC value
is equal to 128, motoRPin1 and motoRPin2 output low level, the motor STOPS. Then determine the PWM
duty cycle according to the difference (delta) between ADC value and 128. Because the absolute delta value
stays within 0-128, we need to use the map() subfunction mapping the delta value to a range of 0-255. Finally,
we see a display of the duty cycle in Terminal.
void motor (int ADC) {
int value = ADC -128;
if(value>0) {
digitalWrite (motoRPinl, HIGH) ;
digitalWrite (motoRPin2, LOW) ;

printf ("turn Forward. .. \n”);

}

else if (value<0) {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, HIGH) ;
printf ("turn Backward...\n”);

}

else {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, LOW) ;

printf ("Motor Stop...\n");

support@freenove.com [l

135

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

}
softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 100)) ;
printf ("The PWM duty cycle is %d%%\n”, abs (value)*100/127) :// print out PW duty cycle.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com ke

Chapter 14 Relay & Motor

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 14.1.1 Relay & Motor

In this project, we will use a Push Button Switch indirectly to control the DC Motor via a Relay.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x11
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

—-a. - -

[SRR ——————

9V battery (prepared by yourself) & battery line

Breadboard Power module x1 Resistor 10kQ x2 | Resistor 1kQ x1 | Resistor 220Q x1

5V OFF 3.3V
0000

+ -

NPN Relay x1 Motor x1 Push button x1 LED x1 Diode x1

transistor x1 1

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

138

support@freenove.com www.freenove.com [l

Component knowledge

Relay

Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control
one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate the
Switch action. When the electromagnet is energized (powered), it will attract internal contacts completing a
circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a small low
amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in automobiles,
especially from the ignition to the starter motor.

The following is a basic diagram of a common Relay and the image and circuit symbol diagram of the 5V
relay used in this project:

Diagram Feature: Symbol
Armature Cﬁnactor
Spring Z m—
N 24 6 .
&Y ° 3 o
1 / e 2
L + l 30 24VDC - 6
Electromagnet it — 4 T >
Signal power 1 3 5
Load power
o

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V
power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is
called Closed End and pin 2 is called the Open End.

Inductor

The symbol of Inductance is “L" and the unit of inductance is the “Henry” (H). Here is an example of how this
can be encountered: 1H=1000mH, ImH=1000uH.

An Inductor is a passive device that stores energy in its Magnetic Field and returns energy to the circuit
whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire (usually
copper wire). Inductors will hinder the changing current passing through it. When the current passing through
the Inductor increases, it will attempt to hinder the increasing movement of current; and when the current
passing through the inductor decreases, it will attempt to hinder the decreasing movement of current. So the
current passing through an Inductor is not transient.

<2 T~y

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is
present in this coil circuit it can disconnect the power to the relay, the current in the Relay’s coil does not stop
immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both
ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid
any adverse effect on the power supply.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Circuilt

Use caution with the power supply voltage needed for the components in this circuit. The Relay requires a
power supply voltage of 5V, and the DC Motor only requires 3.3V. Additionally, there is an LED present, which

R2
1kQ

5V

R1
2200 ng

LED1

6
Es

55

[e}]

acts as an indicator (ON or OFF) for the status of the Relay’s active status.

Schematic diagram

5V

|

1 J, 3 o
5]
Py
gl
2l T 4 -
ReTay ';%00 ZSMUU]_S_
— 5
11
é o VW3]
M) 1kQ 151
1 19
4 21
= 23]
2L
21
J_ 33
-39}
5V e— ——3.3V xya
GND T T GND
BreadBoardPower

3.3V 5V

SDA1 TXDO|
SCL1 RXDO|
GPI104 GPI1O18|
GPI1017 GP1023|
GP1027 GP1024 |
GPIO22 GPI025
MOSI CEOQ|
MISO CE1|
SCLK SCLO|
SDAO GPI1012|
GPIO5 GPIO16]
GPIO6 GP1020]
GPI1O013 GP1021|
GPIO19

GPIO26 Raspberry Pi

GPIO Extension Shield

GND

PRERERRREFREE

R1
10kQ

R2
10kQ

1

support@freenove.com [l

139

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

EEREEEEEREEE R R R R R R EERRRREERD

Raspberry Pi GPIO Extension Shield

.
.
.
.
.

#MISO GPIO25e
#SCK CEO
#GND CE1
#SDA0 SC
#GPIO5 GN
#GPIO6 GPIO
#GPIO13 GN
#GPIO19 GPIO
#GPI026 GPIO20:
#GN GPIO21e

e e e e
e e e 0.

e e 0w
se s e

o000
e oo e
e

ee e e
s e e e e
e e s o000

Press replay

for connection.

LR

o
— |

0CO0 DN
AE'S 140 AS F4 AE'E 440 AS ‘ ‘

T

Video: https://youtu.be/CUpPpWqg8YI8

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/CUpPpWq8YI8

B vwww.freenove.com D4 support@freenove.com [RENI

Code

The project code is in the same as we used earlier in the Table Lamp project. Pressing the Push Button Switch
activates the transistor. Because the Relay and the LED are connected in parallel, they will be powered ON at
the same time. Press the Push Button Switch again will turn them both OFF.

C Code 14.1.1 Relay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 14.1.1_Relay directory of C code.

cd ~/Freenove_Kit/Code/C_Code/14.1.1_Relay

2. Use following command to compile "Relay.c” and generate executable file "Relay"”.

gcc Relay.c -0 Relay -lwiringPi

3. Run the generated file "Relay".

sudo ./Relay

After the program is executed, pressing the Push Button Switch activates the Relay (the internal switch is
closed), which powers the DC Motor to rotate and simultaneously powers the LED to turn ON. If you press
the Push Button Switch again, the Relay is deactivated (the internal switch opens), the Motor STOPS and the
LED turns OFF.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

#tdefine relayPin 0 //define the relayPin
#define buttonPin 1 //define the buttonPin
int relayState=LOW; //store the State of relay

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state
long captureTime=50; //set the button state stable time

int reading;

int main(void)

{

”

printf ("Program is starting...\n”);

wiringPiSetup() ;

pinMode (relayPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;
pullUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {
reading = digitalRead(buttonPin); //read the current state of button
if(reading != lastbuttonState) { //if the button state changed , record the time

point

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

}

lastChangeTime = millis();
}
//if changing-state of the button last beyond the time we set, we considered that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed, update the data.
if(reading != buttonState) {
buttonState = reading;
//if the state is low, the action is pressing.
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
relayState = !relayState;
if (relayState) {

printf (“turn on relay ...\n”);
}
else {

printf (“turn off relay ...\n”);
}

}

//if the state is high, the action is releasing
else {

printf ("Button is released!\n”);

}

digitalWrite(relayPin, relayState) ;
lastbuttonState = reading;

return 0;

The project code is in the same as we used earlier in the Table Lamp project.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com IR

Chapter 15 Servo

Previously, we learned how to control the speed and rotational direction of a DC Motor. In this chapter, we
will learn about Servos which are a rotary actuator type motor that can be controlled rotate to specific angles.

Project 15.1 Servo Sweep

First, we need to learn how to make a Servo rotate.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x3

GPIO Expansion Board & Ribbon Cable x1
—-a. - -
Breadboard x1

Servo x1

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Component knowledge

Servo

Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor
and control circuit board. Most Servos only have a 180-degree range of motion via their “horn”. Servos can
output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars,
model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin
plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the
signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit.

Q Signal
VCC
GND

Servo

=

We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-
2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of
the corresponding values are as follows:

Note: the lasting time of high level corresponding to the servo angle is absolute instead of accumulating. For
example, the high level time lasting for 0.5ms correspond to the 0 degree of the servo. If the high level time
lasts for another 1ms, the servo rotates to 45 degrees.

High level time | Servo angle
0.5ms 0 degree
1ms 45 degree
1.5ms 90 degree
2ms 135 degree
2.5ms 180 degree

When you change the Servo signal value, the Servo will rotate to the designated angle.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [

Circuit

Use caution when supplying power to the Servo it should be 5V. Make sure you do not make any errors when
connecting the Servo to the power supply.

Schematic diagram

3.3V 5V
—31SDA1 TXDO =8
il SCLA RXDO |12
—L1GPIO4 GPIO18}-12
11GPIO17 GPIO23HE-
31GPI027 GPIO24}18. 7
21GPI022 GPI025 22—
19 Imos| CEO0 |24~
21IMiso CE1}L26-
23.1SCLK SCLO |28~
-2LISDAO GPIO12}3
% 8P|85 gPI81Gg
11GPIOs PI020
-331GPIO13 GP1021 40
%GPIOW
GPIO26 Raspberry Pi
GPI0 Extension Shield
GND

i

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

: L ® o o 0 0 ® o o o 0 ® o 0o 0 0 L L B ® o o 0 0 * o o 0 0
: ° . o . . . * o o 0 . . L . . L)
l ©

- B

: (g s L I I I B B R R I R R R D B R R R D R B B
: 'g . ® ® 0 9 9 9 0 P PSPPSR YNGY
: 2 ‘= ® 9 9 9 9 9 9 P O P P PP PP YT SO YYD
: 2 S ® ® 9 9 9 0 O 0 O P O SO PO YSESYONYOD
: ﬁ : L B R I B B R D L I B R L B R B B B B
N o ©

Y o

= 0 ~~~~~ L B B I I B B B B I L D L B I B R B B B
: — ® 9 9 9 0 0 0 0 O P PO PSS YYD
: n- ® ® 0 9 9 9 0 O O P PP PP OSSOSO
: Q L B D I L B D L B L D B B L B B B B
: g L L I B I I I R R R R B D D D D B R B B
o

- 0

- ©

: m LN . * o 0 * e ° 0 . o . * e o 00 . L

: L L B * e ° 00 * o o 00 ® o ° 00 * o o o0 * o 0 00 * o o o0 * e o 00 * o o 00

Video: https://youtu.be/leptbJh32ZI

Sorry latter chapters don’t have videos yet.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/leptbJh32ZI

X support@freenove.com www.freenove.com [l

Code

In this project, we will make a Servo rotate from 0 degrees to 180 degrees and then reverse the direction to
make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

C Code 15.1.1 Sweep

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 15.1.1_Sweep directory of C code.

2. Use following command to compile "Sweep.c" and generate executable file "Sweep".

3. Run the generated file "Sweep".

After the program is executed, the Servo will rotate from O degrees to 180 degrees and then reverse the
direction to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.
The following is the program code:

#include <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#tdefine OFFSET MS 3 //Define the unit of servo pulse offset: 0.lms

fidefine SERVO MIN MS 5+0FFSET MS //define the pulse duration for minimum angle of servo
fidefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of servo
ftdefine servoPin 1 //define the GPIO number connected to servo

long map (long value, long fromLow, long fromHigh, long toLow, long toHigh) {
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow;
}
void servolnit(int pin) { //initialization function for servo PMW pin
softPwmCreate (pin, 0, 200);
}
void servoWrite(int pin, int angle) { //Specific a certain rotation angle (0-180) for the
servo
if (angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN MS, SERVO MAX MS)) :
}
void servoWriteMS(int pin, int ms) { //specific the unit for pulse(5-25ms) with specific
duration output by servo pin: 0. lms
if (ms > SERVO MAX MS)
ms = SERVO MAX MS;
if (ms < SERVO MIN MS)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

ms = SERVO MIN MS;

softPwmWrite (pin, ms) ;

int main(void)

int i;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

servolnit (servoPin) ; //initialize PMW pin of servo
while (1) {

for (i=SERVO_MIN MS;i<SERVO MAX MS:i++) { //make servo rotate from minimum angle to
maximum angle
servoWriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO_MAX_MS;i>SERVO MIN MS:i—) { //make servo rotate from maximum angle to
minimum angle
servoWriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
}
return 0;

}

A 50 Hz pulse for a 20ms cycle is required to control the Servo. In function softPwmCreate (int pin, int

initialValue, int pwmRange), the unit of the third parameter pwmRange is 100US, specifically 0.1ms. In order
to get the PWM with a 20ms cycle, the pwmRange shoulde be set to 200. So in the subfunction of servolnit
(), we create a PWM pin with a pwmRange of 200.

void servolnit (int pin) { //initialization function for servo PWM pin

softPwmCreate (pin, 0, 200);

Since 0-180 degrees of the Servo’s motion corresponds to the PWM pulse width of 0.5-2.5ms, with a
PwmRange of 200 ms. We then need the function softPwmWrite (int pin, int value) and the scope 5-25 of
the parameter values to correspond to 0-180 degrees’ motion of the Servo. What's more, the number written
in subfunction servoWriteMS () should be within the range of 5-25. However, in practice, due to the inherent
error manufactured into each Servo, the pulse width will have a deviation. So we need to define a minimum
and maximum pulse width and an error offset (this is essential in robotics).

. #define OFFSET MS 3 //Define the unit of servo pulse offset: 0.1lms

ftdefine SERVO MIN MS 5+OFFSET MS //define the pulse duration for minimum angle of servo

support@freenove.com [l

147

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

#tdefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of servo
void servoWriteMS (int pin, int ms) {
if (ms > SERVO MAX MS)
ms = SERVO MAX MS;
if (ms < SERVO_MIN_MS)
ms = SERVO _MIN MS;
softPwmWrite (pin, ms) ;
}
In subfunction servoWrite (), directly input an angle value (0-180 degrees), map the angle to the pulse width
and then output it.

void servoWrite(int pin, int angle) { //Specif a certain rotation angle (0-180) for the
servo
if(angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO_MIN_MS, SERVO_MAX MS)) ;

}
Finally, in the "while" loop of the main function, use two "for" cycle to make servo rotate from O degrees to
180 degrees, and then from 180 degrees to 0 degrees.
while (1) {
for (i=SERVO_MIN_MS;i<SERVO MAX MS:i++){ //make servo rotate from minimum angle to

maximum angle
servoWriteMs (servoPin, i) ;
delay (10) ;
1
delay (500) ;
for (i=SERVO_MAX MS;i>SERVO MIN MS:i—) { //make servo rotate from maximum angle to
minimum angle
servollriteMsS (servoPin, i) ;
delay (10) ;
}
delay (500) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com MK

Chapter 16 Stepper Motor

Thus far, we have learned about DC Motors and Servos. A DC motor can rotate constantly in on direction but
we cannot control the rotation to a specific angle. On the contrary, a Servo can rotate to a specific angle but
cannot rotate constantly in one direction. In this chapter, we will learn about a Stepper Motor which is also a
type of motor. A Stepper Motor can rotate constantly and also to a specific angle. Using a Stepper Motor can
easily achieve higher accuracies in mechanical motion.

Project 16.1 Stepper Motor

In this project, we will learn how to drive a Stepper Motor, and understand its working principle.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x12
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Stepper Motor x1 ULN2003 Stepper Motor Driver x1

— -

9V battery (prepared by yourself) & battery line

5V OFF 3.3V 5V OFF 3.3V
0000

+ +-
L

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

150 support@freenove.com www.freenove.com [l

Component knowledge

Stepper Motor

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular
displacement or linear displacement. In a non-overload condition, the speed of the motor and the location
of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes
in load as with a DC Motor. A small Four-Phase Deceleration Stepper Motor is shown here:

Jor [Joo | |
oNw>

PWR
Stepper Motor

12345

The electronic schematic diagram of a Four-Phase Stepper Motor is shown below:

A
B

COM

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There is a
specific number of individual coils, usually an integer multiple of the number of phases the motor has, when
the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex
diagonal groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent
magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered
sequence (producing a series of “steps” or stepped movements).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

A common driving sequence is shown here:

AL

COM COM

In the sequence above, the Stepper Motor rotates by a certain angle at once, which is called a “step”. By
controlling the number of rotational steps, you can then control the Stepper Motor’s rotation angle. By
defining the time between two steps, you can control the Stepper Motor’s rotation speed. When rotating
clockwise, the order of coil powered onis: A=> B> C-> D 2> A 2> . And the rotor will rotate in accordance
with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, D =2
C—> B> A->D->,the rotor will rotate in counter-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the
stator will be located in the center of A B, which is called a half-step. This method can improve the stability of
the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: A > AB = B = BC
2> C—> CD > D> DA > A > the rotor will rotate in accordance to this sequence ar, a half-step at a
time, called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper
Motor will rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full
revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed
reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper
Motor’s housing) requires 32 X 64 = 2048 steps to make one full revolution.

support@freenove.com [l

151

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

ULN2003 Stepper Motor driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order
to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal
A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can
be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

AL Nt A 18-
21 N2 B |2
31IN3 c o
Al Na p 1L
2lGND pwr [12
b1 vcc
Ll pwR

ULN2003 Stepper

Motor Driver

Circuit

When building the circuit, note that rated voltage of the Stepper Motor is 5V, and we need to use the
breadboard power supply independently, (Caution do not use the RPi power supply). Additionally, the
breadboard power supply needs to share Ground with Rpi.

Schematic diagram
3.3V 5V
—34SDA1 TXDO =8~
—24scL1 RXDO 10—
—LIGPI04 GPI018}-12 1, 1N Al8 A
AdGpPio17 GPI023-16 21 N2 B |2 21
31GPIO27 GP1024}-18 3] N3 c fo—3]c
2.1GPI022 GP1025}-22 41 1ng p [1—4lp
9 IMOSI CEO|&d~ || 51GND PWR 12— 5]pwr
211IMISO CE1}£8 6 vce L -
-23.1sCLK scLof8~ |—7]pwr tepper Motor
2L1spao GPIO12}32. ©
_3_LGPIO6 GPI1020 _3_8_ Motor Driver
-331GPI013 GPI021{40. S— + e
351GPIO19
GPIO26 Raspberry Pi -J_
GPIO Exéeb?slon Shield SV% 1 3.3y
[GND T T GND
= = BreadBoardPower

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com NS

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

.o .
.o .

oo » o
o .

. .

Y #GPIO17 GPIO18e B

T #GPI027 GNDe)

Y #GP1022 GPIO23s I

Y #3V3 .

Y #MOSI o

Y oMISO GPIO25e S

B #SCK °

T oGND ° e

COY #SDAO L

B #GPIOS L

LY #GPIO6 GPIO12e 3R

Y #GPIO13 GNDe
LY «GPIO19 GPIO16e 3R B
(Y #GP1026 GPIO20e 3R .
A «GND GPIO21e 233

LN] . .
LN]

)

o

AE'E 440 AS & AE'E 440 AS

® o o0 0 0 0 0 0 0 00 0 0 0

® @ 0 0 0 0 0 0 00 00 000 0 0 00 0

® © © 0o 0 0 ® 00 0 0 0 0 0 0 00 0 0 0 0 0 0 e e ti
® © 0 0 00 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 e e (I
® e e e 9 0000000000000 0000 00 e e ¢

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Code

C Code 16.1.1 SteppingMotor

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

2. Use following command to compile "SteppingMotor.c” and generate executable file "SteppingMotor".

3. Run the generated file "SteppingMotor”.

After the program is executed, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and
repeat this action in an endless loop.
The following is the program code:

#include <stdio.h>

#include <wiringPi.h>

const int motorPins[]={1, 4,5, 6} ; //define pins connected to four phase ABCD of stepper
motor
const int CCWStep[]={0x01, 0x02, 0x04, 0x08}; //define power supply order for coil for rotating
anticlockwise
const int CWStep[]={0x08, 0x04, 0x02, 0x01}; //define power supply order for coil for rotating
clockwise
//as for four phase Stepper Motor, four steps is a cycle. the function is used to drive the
Stepper Motor clockwise or anticlockwise to take four steps
void moveOnePeriod (int dir, int ms) {
int 1=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite (motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW):
printf ("motorPin %d, %d \n”,motorPins[i], digitalRead (motorPins[i])):
}
printf ("Step cycle!\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed speed
limit of the motor
ms=3;

delay (ms) ;

}

//continuous rotation function, the parameter steps specifies the rotation cycles, every four

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

steps is a cycle

void moveSteps (int dir, int ms, int steps) {
int i;
for(i=0;i<steps;it++) {

moveOnePeriod(dir, ms) ;

}
void motorStop() { //function used to stop rotating
int 1i;
for (i=0;1<4;1++) {
digitalWrite (motorPins[i], LOW) ;

}
}
int main(void) {
int i;
printf ("Program is starting ...\n”);
wiringPiSetup () ;

for(i=0;i<4;i++) {
pinMode (motorPins[i], OUTPUT) ;

}
while (1) {
moveSteps (1, 3, 512) ; //rotating 360° clockwise, a total of 2048 steps in a circle,
namely, 512 cycles
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360° anticlockwise
delay (500) ;
}
return 0;

}
In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a
four-step rotation mode.

const int motorPins[]={1, 4,5, 6} ; //define pins connected to four phase ABCD of stepper
motor

const int CCWStep[]={0x01, 0x02, 0x04, 0x08} ; //define power supply order for coil for rotating
anticlockwise

const int CWStepl[]={0x08, 0x04, 0x02, 0x01}; //define power supply order for coil for rotating

clockwise

Subfunction moveOnePeriod ((int dir,int ms) will drive the Stepper Motor rotating four-step clockwise or
anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the
servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between

support@freenove.com [l

155

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of
less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate.

void moveOnePeriod (int dir, int ms) {
int i=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) 2 HIGH : LOW);
else //power supply order anticlockwise
digitalWrite (motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW);
printf ("motorPin %d, %d \n”,motorPins[i], digitalRead (motorPins[i])) ;
}
printf ("Step cycle!\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed speed
limit of the motor
ms=3;

delay (ms) ;

—

}

Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of Stepper Motor.

void moveSteps(int dir, int ms, int steps) {
int 1i;
for(i=0;i<steps;i++) {

moveOnePeriod (dir, ms) ;

—

}
Subfunction motorStop () is used to stop the Stepper Motor.

void motorStop() { //function used to stop rotating
int i;

for(i=0;i<4;i++) {

digitalWrite (motorPins[i], LOW) ;

}
Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution

—

anticlockwise. According to the previous material covered, the Stepper Motor one revolution requires 2048
steps, that is, 2048/4=512 cycle.

while (1) {
moveSteps (1, 3,512) ; //rotating 360° clockwise, a total of 2048 steps in a
circle, namely, this function(four steps) will be called 512 times
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360° anticlockwise
delay (500) ;
}

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com INEH

Chapter 17 74HC595 & Bar Graph LED

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of RPi are occupied. More
GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we
make flowing water light with less GPIO ports? In this chapter, we will learn a component, 74HC595, which
can achieve the target.

Project 17.1 Flowing Water Light

Now let us learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper x17
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

74HC595 x1 Bar Graph LED x1 Resistor 220Q x8

—-a. - -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data
of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this
characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the
RPI board are required to control the 8 ports of the 74HC595 chip.

1 16 - @ vee i
2 15 3 Q2 Q0 7
3 14 <13 DS =
4 13 <1 Q4 OF |5
5 12 =1 Q5 ST.CP =
6 11 ~1 Q6 SH.CP 5
7 10 =197 MR (5
8 9 =] GND Q7 =
74HC595
The ports of the 74HC595 chip are described as follows:

Pin name Pin number Description

Q0-Q7 15,1-7 Parallel Data Output

VCC 16 The Positive Electrode of the Power Supply, the Voltage is 2~6V

GND 8 The Negative Electrode of Power Supply

DS 14 Serial Data Input

OE 13 Enable Output,

When this pin is in high level, Q0-Q7 is in high resistance state
When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the
parallel data output.

SH_CP 11 Serial Shift Clock: when its electrical level is rising, serial data input register
will do a shift.

MR 10 Remove Shift Register: When this pin is in low level, the content in shift
register will be cleared.

Q7 9 Serial Data Output: it can be connected to more 74HC595 chips in series.

For more details, please refer to the datasheet on the 74HC595 chip.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [ESE]

Circuit

Schematic diagram

3
3.3V 5V
—3.1SDA1 TXDO -8~
et SCL 1 RXDO 10—
—LAGPI104 GPIO18 112~
111Gpi017 GPI023 |16
,__-131GP1027 GPI024 |18
—__151GPI022 GPI1025}22
—194MmoslI CEO 24
~21IMISO CE1}28-
231sCLK SCLO}28-
-2L1SDAO GPIO12}32—
291GPI05 GPI016 |36~
S11GPIO6 GP1020}-38
-331GPI013 GPI021}40
% GPIO19
GPI1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

=i

® o o 0o 0 e o 0 0o o

1
® ® ® 0 00 000000 0 00
® ® 00 000 0000 0 0 0 0
® ® 00 00 00000 0000

.

® © 0 0 0 00 0000 0 0 0 0
® e 0 0 00 0 0 00 0 0 0

® 0o 0 0 0000 00 0 0
® © 0 9 9 9 ° 0 e 0 0000 0 0 0 00 e e 0o

® ® 0 0000 0000 00 00
¢ ® © © 0 0 0 0 0 0 0 0 0 0 0 0

e 0 00 e e 0 00 L A ® e 0 0

Raspberry Pi GPIO Extension Shield

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com

www.freenove.com Il

Code

In this project we will make a flowing water light with a 74HC595 chip to learn about its functions.

C Code 17.1.1 LightWater02

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 17.1.1_LightWater02 directory of C code.

2. Use following command to compile “LightWater02.c” and generate executable file “LightWater02".

3. Then run the generated file “LightWater02".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
f#include <wiringShift.h>

fdefine
fdefine
fdefine

dataPin 0 //DS Pin of 74HC595 (Pinl4)
latchPin 2 //ST_CP Pin of 74HC595(Pinl12)
clockPin 3 //CH CP Pin of 74HC595 (Pinll)

void _shiftOut(int dPin, int cPin, int order, int val) {

int 1i;
for(i = 0; i < 8; i++){

digitalWrite (cPin, LOW);
if (order == LSBFIRST) {

digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH :

delayMicroseconds (10) ;

}
else {//if (order == MSBFIRST) {

digitalWrite (dPin, ((0x80&(val<<i)) == 0x80) ? HIGH :

delayMicroseconds (10) ;

}
digitalWrite (cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)

{

int 1i;

LOW) ;

LOW) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

unsigned char x;

printf ("Program is starting ...\n”);

wiringPiSetup() ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
x=0x01;
for (i=0;1<8;1++) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite (latchPin, HIGH); //Output high level to latchPin, and 74HC595 will
update the data to the parallel output port

x<<=1; //make the variable move one bit to left once, then the bright LED
move one step to the left once.
delay (100) ;
}
x=0x80;

for (i=0;i<8;1++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (100) ;

}
return 0;
}
In the code, we configure three pins to control the 74HC595 chip and define a one-byte variable to control
the state of the 8 LEDs (in the Bar Graph LED Module) through the 8 bits of the variable. The LEDs light ON
when the corresponding bit is 1. If the variable is assigned to 0x01, that is 00000001 in binary, there will be
only one LED ON.
! x=0x01;
In the “while” cycle of main function, use two cycles to send x to 74HC595 output pin to control the LED. In
one cycle, x will shift one bit to the LEFT in one cycle, then when data of x is sent to 74HC595, the LED that is
turned ON will move one bit to the LEFT once.
for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
~shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite (latchPin, HIGH) ; // Output high level to latchPin, and 74HC595 will
update the data to the parallel output port

support@freenove.com [l

161

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

x<<{=1: // make the variable move one bit to left once, then the bright LED move

one step to the left once.
delay (100) ;

In second cycle, the situation is the same. The difference is that x is shift from 0x80 to the RIGHT in order.

"<<"is the left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction
and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left;
byte x = 1 << 1;
<« <« <« <« <« <« <«
—[ofoJoJoJoJofof1][o]
The result of x is 2 (binary 00000010) .
[ofoJoJofofof1]o]

There is another similar operator” >>". For example, shift binary 00000001 by 1 bit to right:
bytex=1>>1;
— — — — — — —
[of~[ofojofojofJofoj1]~
The result of x is 0 (00000000) .
[ofjojojojofofofo]

X <<=1lisequivalenttox =x << land x>>=1isequivalenttox = x>>1

About shift function

This is used to shift an 8-bit data value in with the data appearing on the dPin and the clock being sent out
on the cPin. Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high. (So cPin
high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.

This is used to shift an 8-bit data value out with the data being sent out on dPin and the clock being sent
out on the cPin. order is as above. Data is clocked out on the rising or falling edge - ie. dPin is set, then
cPin is taken high then low - repeated for the 8 bits.

For more details about shift function, please refer to: https://github.com/WiringPi/WiringPi

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

B vwww.freenove.com D4 support@freenove.com IS

Chapter 18 74HC595 & 7-Segment Display

In this chapter, we will introduce the 7-Segment Display.

Project 18.1 7-Segment Display

We will use a 74HC595 IC Chip to control a 7-Segment Display and make it display sixteen decimal characters
"0" to “F".

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x18
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

T4HC595 x1 7-Segment Display x1 Resistor 220Q x8

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Component knowledge

7-segment display
A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point represented,
which consists of 8 LEDs. The LEDs have a Common Anode and individual Cathodes. Its internal structure and

pin designation diagram is shown below:

:U L —
=8 FEEREERE

] 9 10 5

3,8

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by combining
LEDs with different states of ON and OFF, we can display different characters (Numbers and Letters). For
example, to display a “0": we need to turn ON LED segments A, B, C, D, E and F, and turn OFF LED segments

s
In

In this project, we will use a 7-Segment Display with a Common Anode. Therefore, when there is an input low
level to an LED segment the LED will turn ON. Defining segment “A” as the lowest level and segment “DP” as
the highest level, from high to low would look like this: “DP”, “G", “F", “E", “D", “C”, “B”, “"A". Character "0"
corresponds to the code: 1100 0000b=0xcO.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com K

Circuit

Schematic diagram

o0
X

3.3V 3.3V 5V
Q0 ,/w\/\—l I —3-1SDA1 TXDO |8~
Qi M Hoa vee | —21sCL1 RXDO |10
Q2 MAA Sk Qo |> —LAGPIO4 GPIO18}-12—
s A 13 DS |13 111GpPi017 GPI023 {16~
o4 A = o4 OF |35 __-131GPI1027 GPI024 |18~
s AN 2los stcp pE—"1" ~131GPIO22 GPI025 [-22—
Q6 A 2las sHcer pr—o[-12{MOs| CEO 24—
Q7 MAA a7 MR ?—l%;; 211IMiso CE1}-26—
zo [~ GND Q7 |- -231scLK SCLO|28—
- L -211SDAD GPIO12}32—
= — 291GPIO5 GPIO16 |36
= 31llGPIos GPI020}-38~
e 33-85:818 GPI021 {40
2 -311GPI026 Raspberry Pi
b GPIO Extension Shield
E —L
F
G
bP ——
CcCOM —
om < >

L ® o0 0
* Gy ® e 0o 0 0
il CGEEEEmp ¢ 0 ¢ ¢ ¢
‘.'-.....
L B R B B

Pt et et et et

Raspberry Pi GPIO Extension Shield

EERRER R R R R R R R R R R R R R R ERERERERERE |

Video: https://youtu.be/KSEOLdyuOFM

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/KSE0LdyuOFM

X support@freenove.com www.freenove.com [l

Code

This code uses a 74HC595 IC Chip to control the 7-Segment Display. The use of the 74HC595 IC Chip is
generally the same throughout this Tutorial. We need code to display the characters “0” to “F” one character
at a time, and then output to display them with the 74HC595 IC Chip.

C Code 18.1.1 SevenSegmentDisplay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of C code.

cd ~/Freenove_Kit/Code/C_Code/18.1.1 SevenSegmentDisplay

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file
“SevenSegmentDisplay”.

gcc SevenSegmentDisplay.c -0 SevenSegmentDisplay -lwiringPi

3. Then run the generated file “SevenSegmentDisplay”.

sudo ./SevenSegmentDisplay

After the program is executed, the 7-Segment Display starts to display the characters “0” to “F" in succession.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>

#idefine dataPin 0 //DS Pin of 74HC595(Pinl4)

#tdefine latchPin 2 //ST CP Pin of 74HC595 (Pinl2)

#define clockPin 3 //CH_CP Pin of 74HC595(Pinll)

//encoding for character 0-F of common anode SevenSegmentDisplay.

unsigned char
num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} :

void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i++){
digitalWrite (cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if(order == MSBFIRST) {
digitalWrite (dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite (cPin, HIGH) ;
delayMicroseconds (10) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

int main(void)
{

int 1i;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (i=0; i<sizeof (num) ;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the highest
level is transfered preferentially.
digitalWrite (1atchPin, HIGH) ;
delay (500) ;
}
for (i=0;i<sizeof (num) ;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i] & 0x7f);//Use the “&0x7f” to display
the decimal point
digitalWrite (latchPin, HIGH) ;
delay (500) ;

}

return 0;

}

First, we need to create encoding for characters “0” to “F" in the array.

unsigned char

num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} ;

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters. Pay attention to this in regard
to shiftOut function, the transmission bit, flag bit and highest bit will be transmitted preferentially.

for (i=0;i<sizeof (num) ; i++) {

digitalWrite (latchPin, LOW) ;

~shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the highest
level is transfered preferentially.

digitalWrite (latchPin, HIGH) ;

delay (500) ;

support@freenove.com [l

167

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

If you want to display the decimal point, make the highest bit of each array “0”, which can be implemented
easily by num([i]&0x7f.
_shiftOut (dataPin, clockPin, MSBFIRST, num[i] & 0x7f) ;

Project 18.2 4-Digit 7-Segment Display

Now, let’s try to control more-than-one digit displays by using a Four 7-Segment Display in one project.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x30

GPIO Expansion Board & Wire x1

Breadboard x1
74HC595 x1 PNP 4-Digit 7-Segment Display x1 Resistor 220Q | Resistor 1KQ
transistor x4 x8 x4

SESDHhL

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com LS

Component knowledge

4 Digit 7-Segment Display

A 4 Digit 7-segment display integrates four 7-Segment Displays into one module, therefore it can display
more characters. All of the LEDs contained have a Common Anode and individual Cathodes. Its internal
structure and pin designation diagram is shown below:

121110987

123456

The internal electronic circuit is shown below, and all 8 LED cathode pins of each 7-Segment Display are

connected together.

|12 |9 |8 |6
-’I_I"‘ 'I,_’I_ ‘I,_‘l_ 'I,_'I_
WAVAVAVAVAV AV A VaWAVAVAVAVAVAV A VAVAVAVAVAVAVAV A VaVAVAVAVAVAVAV A

1117 14 12 |1 |10|5 |3

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between
them is that the 4-Digit displays each Digit is visible in turn, one by one and not together. We need to first
send high level to the common end of the first Digit Display, and send low level to the remaining three
common ends, and then send content to 8 LED cathode pins of the first Digit Display. At this time, the first 7-
Segment Display will show visible content and the remaining three will be OFF.

Similarly, the second, third and fourth 7-Segment Displays will show visible content in turn by scanning the
display. Although the four number characters are displayed in turn separately, this process is so very fast that
it is unperceivable to the naked eye. This is due to the principle of optical afterglow effect and the vision
persistence effect in human sight. This is how we can see all 4 number characters at the same time. However,
if each number character is displayed for a longer period, you will be able to see that the number characters
are displayed separately.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

(GPXOZg

1147 J4]2 (1 105 [3
3.3V

220Q

3.3V 5V
—2{SDA1 TXDO (-8
¢ —2.1SCL1 RXDO |10
glle —L1GPIO4 GPI01812—Grioig
] I I GPIO17 1iGpio17 GPI023}16 Grioz3
8188 GPi027 31GPI027 GPI024 18 "Grias
z|z|2 GPi022 2 1GPI022 GPI025 22
clels 3.3 MOs! 19 Imosi CEO0 24—

: E— 211mis0 CE1[26-
Farcsss a1 ——{ Q1 vee i3 ~234SCLK SCLOJ28~
Tancsss 0z ——5{ Q2 Qo %_mq -2L1SDAD GPIO12}-32—
7ancsss 03— Q3 DS |i%— GPioa -291GPIO5 GPIO16 {36
Tarcsss 04—+ Q4 ot f—| -311GpPIOs GPIO20[38~
74HC595 Q5 2los sTcp -331GPIO13 GPI1021 {40
74HC595 Q6 —— 83 SH_CP 70 GPIO1§ .. %82:8;2
[74HC595 Q7 ——— MR g = Raspberry Pi

Ship QF = GPIO Extension Shield
74HC595 GND

Il

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [ENAN

Hardware connection

Raspberry Pi GPIO Extension Shield

.
°
oo . 0
. o .
oo . .
. .
° . .
£4 #GP1022 GPIO23s)
LY #3V3 ¢
——— #MOSI . B
DY «MISO GPIO25e 3 o
oo . .
—————] . .
o .
o .
. e . o
.o . .
o . .
LY #GP1026 GPIO20e 3 .
DA «GND GPIO21e 10
L) . .
e e o e e .o
S e ¢ .
o e e e oo oo
L) e e oo e o e
o o el o
o e e e o e . e
L) DR .o
o .
. . . .
L . . .
° .
L Ll L
. . RO .o
o e e e
L) .o
.o .o . e
i . . - e e
. i L)
o fl o tn oo
I -'I eel e A ¢ e
e e .o
e ¢ e oo
. e
.‘Ao.. e e o
ceqg e e e e
E— -
.« .) . e e
. i y
LI LE =N . =~ o .o
L) e oo el e oo
o sege .o
L) o oo
L) o .
L)
e e .o
. e o o
. .
. .

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Code

In this code, we use the 74HC595 IC Chip to control the 4-Digit 7-Segment Display, and use the dynamic
scanning method to show the changing number characters.

C Code 18.2.1 StopWatch

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter directory of C code.

cd ~/Freenove_Kit/Code/C_Code/18.2.1_StopWatch

2. Use following command to compile "StopWatch.c" and generate executable file "StopWatch".
gcc StopWatch.c -o StopWatch -lwiringPi

3. Run the generated file "SteppingMotor”.

sudo ./StopWatch

After the program is executed, the 4-Digit 7-Segment Display starts displaying a four-digit number
dynamically, and the numeric value of this number will increase by plus 1 each second thereafter.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>
#tdefine dataPin 5 //DS Pin of 74HC595(Pinl4)
#define latchPin 4 //ST CP Pin of 74HC595(Pinl2)
#define clockPin 1 //CH_CP Pin of 74HC595(Pinl11)
const int digitPin[]={0, 2,3, 12} ; // Define 7-segment display common pin
// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;
int counter = 0; //variable counter, the number will be displayed by 7-segment display
//Open one of the 7-segment display and close the remaining three, the parameter digit is
optional for 1,2,4,8
void selectDigit(int digit) {
digitalWrite(digitPin[0], ((digit&0x08) == 0x08) ? LOW : HIGH) ;
digitalWrite(digitPin[1], ((digit&0x04) == 0x04) ? LOW : HIGH) ;
digitalWrite(digitPin[2], ((digit&0x02) == 0x02) ? LOW : HIGH) ;
digitalWrite(digitPin[3], ((digit&0x01) == 0x01) ? LOW : HIGH) ;
}
void shiftOut(int dPin, int cPin, int order, int val) {
int 1i;
for(i = 0; i < 8; i++){
digitalWrite (cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

delayMicroseconds (1) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com Mg

}

else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (1) ;

}

digitalWrite (cPin, HIGH) ;

delayMicroseconds (1) ;

}

}

void outData(7nt§ t data) { //function used to output data for 74HC595
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, data) ;
digitalWrite(latchPin, HIGH) ;

}

void display(int dec){ //display function for 7-segment display
int delays = 1;

outData (0xff) ;
selectDigit (0x01) ; //select the first, and display the single digit
outData (num[dec%10]) ;
delay (delays) ; //display duration
outData (0xff) ;
selectDigit (0x02) ; //select the second, and display the tens digit
outData (num[dec%100/10]) ;
delay (delays) ;
outData (0xff) ;
selectDigit (0x04) ; //select the third, and display the hundreds digit
outData (num[dec%1000/100]) ;
delay (delays) ;
outData (0xff) ;
selectDigit (0x08) ; //select the fourth, and display the thousands digit
outData (num[dec%10000/1000]) ;
delay (delays) ;
}
void timer (int sig) { //Timer function

if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and update
the number displayed by 7-segment display
counter ++;
alarm(1); //set the next timer time

printf (“counter : %d \n”, counter) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

int main(void)

{

int 1i;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode

pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (i=0;1<4;1++) {
pinMode (digitPin[i], OUTPUT) ;
digitalWrite(digitPin[i], HIGH) ;
}
signal (SIGALRM, timer) ; //configure the timer

alarm(1) ; //set the time of timer to 1s
while (1) {

display(counter); //display the number counter
}
return 0;

First, we define the pin of the 74HC595 IC Chip and the 7-Segment Display Common Anode, use character
encoding and a variable "counter” to enable the counter to be visible on the 7-Segment Display.
#define dataPin 5 //DS Pin of 74HC595(Pinl4)
#define latchPin 4 //ST CP Pin of 74HC595(Pinl2)
#define clockPin 1 //CH_CP Pin of 74HC595(Pinl1l)
const int digitPin[]={0, 2, 3, 12}; //Define the pin of 7-segment display common end

// character 0-9 code of common anode 7-segment display

unsigned char num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;

int counter = 0; //variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (int digit) function is used to open one of the 7-Segment Displays while closing the
other 7-Segment Displays, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of a
7-Segment Display.

void selectDigit(int digit) {
digitalWrite(digitPin[0], ((digit&0x08) == 0x08) ? LOW : HIGH) ;
digitalWrite(digitPin[1], ((digit&0x04) == 0x04) ? LOW : HIGH);
digitalWrite(digitPin[2], ((digit&0x02) == 0x02) ? LOW : HIGH);
digitalWrite(digitPin[3], ((digit&0x01) == 0x01) ? LOW : HIGH);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Subfunction outData (int8_t data) is used to make the 74HC595 IC Chip output an 8-bit data immediately.
void outData(int8 t data) { // function used to output data for 74HC595
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, data) ;
digitalWrite(latchPin, HIGH) ;

}
Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the
common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-
Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec”, the second Digit is for tens,
the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using
delay (). The time in this code is very brief, so you will see digits all together. If the time is set long enough,
you will see that every digit is displayed independently.

void display(int dec){ //display function for 7-segment display

selectDigit (0x01) ; //select the first, and display the single digit
outData (num[dec%10]) ;

delay (1) ; //display duration

selectDigit (0x02) ; //Select the second, and display the tens digit
outData (num[dec%100/10]) ;

delay (1) ;

selectDigit (0x04) ; //Select the third, and display the hundreds digit
outData (num[dec%1000/100]) ;

delay (1) ;

selectDigit (0x08) ; //Select the fourth, and display the thousands digit
outData (num[dec%10000/1000]) ;

delay (1) ;

}

Subfunction timer (int sig) is the timer function, which will set an alarm to signal. This function will be executed
once at set time intervals. Accompanied by the execution, “1” will be added as the variable counter and then
reset the time of timer to 1s.

void timer(int sig) { //timer function
if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and update
the number displayed by 7-segment display
counter ++;

alarm(1) ; //set the next timer time

support@freenove.com [l

175

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Finally, in the main function, configure the GPIO, and set the timer function.
pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (i=0;1i<4;i++) {
pinMode (digitPin[i], OUTPUT) ;
digitalWrite (digitPin[i], LOW) ;

}
signal (SIGALRM, timer); //configure the timer

alarm(1) ; //set the time of timer to Is

In the while loop, make the digital display variable counter value “1". The value will change in function timer
(), so the content displayed by the 7-Segment Display will change accordingly.
while (1) {

display (counter); //display number counter

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

Chapter 19 74HC595 & LED Matrix

Thus far we have learned how to use the 74HC595 IC Chip to control the Bar Graph LED and the 7-Segment
Display. We will now use 74HC595 IC Chips to control an LED Matrix.

Project 19.1 LED Matrix

In this project, we will use two 74HC595 IC chips to control a monochrome (one color) (8X8) LED Matrix to
make it display both simple graphics and characters.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper x36
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

T4HC595 x2 8X8 LEDMatrix x1 Resistor 220Q x8

—-a. - -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

178

support@freenove.com www.freenove.com |l

Component knowledge

LED matrix

An LED Matrix is a rectangular display module that consists of a uniform grid of LEDs. The following is an 8X8
monochrome (one color) LED Matrix containing 64 LEDs (8 rows by 8 columns).

161514131211 10 9
00000000
00000000
00000000
00000000

123456738

In order to facilitate the operation and reduce the number of ports required to drive this component, the
Positive Poles of the LEDs in each row and Negative Poles of the LEDs in each column are respectively
connected together inside the LED Matrix module, which is called a Common Anode. There is another
arrangement type. Negative Poles of the LEDs in each row and the Positive Poles of the LEDs in each column
are respectively connected together, which is called a Common Cathode.

The LED Matrix that we use in this project is a Common Anode LED Matrix.

Connection mode of Common Anode Connection mode of Common Cathode
133410 6111516 133410 6111516
X

—_
—

mN\l—\K;Oon-m
s P PR PP P
s P P P P P
P P P P P
U N
o P P P P

PP PP PR PR PR P
PP PP PR PR PR P
WK KKK K KK
mN\I—\;OOJb-kO
P P PR P Pr PR PR PR
P P PR PR Pr PR Pe PR
e Pr PR P& PR PR PR PR
PP Pr PR Pe PR PR PR
P P PR PR Pr PR PR PR
P P P PR Pr PR PR PR
P P Pr PR Pe Pe PR PR
R KR R R R R XK

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Here is how a Common Anode LED Matrix works. First, choose 16 ports on RPI board to connect to the 16
ports of LED Matrix. Configure one port in columns for low level, which makes that column the selected port.
Then configure the eight port in the row to display content in the selected column. Add a delay value and
then select the next column that outputs the corresponding content. This kind of operation by column is
called Scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and
each column is represented by one byte.

1 2 3 45 6 7 8
0|0j0|0|0|0O|O0O]|O
0j0|1|1(1(1(0(0
0[{1(0/0|0|0|1]0
1/0{1]{0]0]|1]0]|1
1{0/0|0]0|0]|0|1
1/0{0[1]|1]0]0]1
0[{1(0/0|0|0|1]0
0j0|1|1(1(1(0(0

Column Binary Hexadecimal

1 0001 1100 Oxlc

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 Ox45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 Oxlc

To begin, display the first column, then turn off the first column and display the second column. (and so on) ...
turn off the seventh column and display the 8th column, and then start the process over from the first column
again like the control of LED Bar Graph project. The whole process will be repeated rapidly in a loop. Due to
the principle of optical afterglow effect and the vision persistence effect in human sight, we will see a picture
of a smiling face directly rather than individual columns of LEDs turned ON one column at a time (although
in fact this is the reality we cannot perceive).

Scanning rows is another option to display on an LED Matrix (dot matrix grid). Whether scanning by row or
column, 16 GPIO is required. In order to save GPIO ports of control board, two 74HC595 IC Chips are used in
the circuit. Every 74HC595 IC Chip has eight parallel output ports, so two of these have a combined total of
16 ports, which is just enough for our project. The control lines and data lines of the two 74HC595 IC Chips
are not all connected to the RPi, but connect to the Q7 pin of first stage 74HC595 IC Chip and to the data pin
of second IC Chip. The two 74HC595 IC Chips are connected in series, which is the same as using one
"74HC595 IC Chip" with 16 parallel output ports.

support@freenove.com [l

179

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Circuit

In circuit of this project, the power pin of the 74HC595 IC Chip is connected to 3.3V. It can also be connected
to 5V to make LED Matrix brighter.

Schematic diagram
3.3V 3.3V
16[1 16
SR T 2l ool
@ BE e e,
Qs sTcp fi2 latchPi] 215 sTcp [
Q6 SH_CP 10 clockPin| 7 Q6 SH_CP 170 -
Q7 MR Q7 MR 2
1 GNP Q7 i——J&—\ 2200]i GND Q7 |2
— 74HC595 — 74HC595
Sasv
[Sj E%j @ g e e e @ 33V 5V
13 3 4 10 |6 11 15 |16 J'ﬁ 28{-\; ;§88 8
9*(X x| X A —L1GPI04 GPIO18 g
. dataPin GPIO17 GPI1023
W"Y X A A X latchPin GPI027 GPI1024}-18
GPI1022 GPI025 [-22—
@8% % ﬁ(% % % % % JQ_MOSI CEO‘-ZA'—
o] 2 2 2 2 A A wion L CE o
[rowa — SCLK SCLO|
1% A A A X ﬁ(;3(X -2L1SDAOD GPIO12 |32~
[rows — -291GPI05 GPIO16}36—
-311GPI06 GP1020 |38
@”X A X X A -331GPI013 GPI021 140
-32.1GPI019
@2% K A X ﬁ(ﬁ(ﬁ(~34GPI026 Raspberry Pi
— s X X X X X X X X GPIO Ex(t;eanionShield

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com KK

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

. |
Second stage
7T4HCH95: B 505
.
j\ ..
LR] I
- # .
. . "
. 0
LR
. 0
.
.
-
L
.
o
o
.
. . LR
LR]
LR
LR
L
* »
LR
* » o
* o G
* o
L B
L B
o R
H L
First stage dptrdp i |
T4HCH95: A | o il
j_ ® * cEnEEEm
o D
. ® o » s F 1=
L] L A LR
. L LR
L] s o 0 LR]
LY*1701dD aNO* LI
L 14 #0Z01dD 9z01d9* LI L
o 11 #9101dD 6101d9® Ll .
o L *aND £101d9* B L
o 119710149 901d9* L .o
> J*aND S0Id9* B .
o OVGS. LR
LR] & GNSC GEEENED °
L)DS' L LR
o 70149 OSIN® B L
. 0 Isow. LR LR
o {7t) co—
L] #£70149 zz01d9* I3
o i *anD Lzoldo* 3
L L1 #3101dD £101d9* 8
LR] o Ll
L o .
LA . .
. .
. o

PI21yS uoisuaix3 OIdo Id Auaqdsey

16151413121110 9

[74cs%5 Pin QO

[74HCS5 Pin G4 =\

0
R o, ¥
i
0

[74RC5%5 Pin Q6

PN
P o B P B o
PP P P P P b
NN NN
NN

1 b
P P P P P P P

s p T

123456738

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Code

Two 74HC595 IC Chips are used in this project, one for controlling the LED Matrix’s columns and the other
for controlling the rows. According to the circuit connection, row data should be sent first, then column data.
The following code will make the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

C Code 19.1.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 19.1.1_LEDMatrix directory of C language.

cd ~/Freenove Kit/Code/C_Code/19.1.1 LEDMatrix

2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”.
gcc LEDMatrix.c -o LEDMatrix -lwiringPi

3. Then run the generated file “LEDMatrix”.

sudo ./LEDMatrix

After the program is executed, the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <wiringShift.h>

4

5 #tdefine dataPin 0 //DS Pin of 74HC595(Pinl4)

6 #tdefine latchPin 2 //ST CP Pin of 74HC595(Pinl2)

7 #tdefine clockPin 3 //SH CP Pin of T74HC595 (Pinll)

8 // data of smile face

9 unsigned char pic[]={0xlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c} ;
10 | unsigned char data[]l={ // data of "0-F”

11 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ”~~
12 0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, // “0”
13 0x00, 0x00, 0x21, O0x7F, 0x01, 0x00, 0x00, 0x00, // "1”
14 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2”
15 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // ”3”
16 0x00, 0x00, 0xOE, 0x32, O0x7F, 0x02, 0x00, 0x00, // "4”
17 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // ”5”
18 0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // ”"6”
19 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7”
20 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // ”8”
21 0x00, 0x00, 0x32, 0x49, 0x49, O0x3E, 0x00, 0x00, // ”9”
22 0x00, 0x00, Ox3F, 0x44, 0x44, Ox3F, 0x00, 0x00, // "A”
23 0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00, // “B”
24 0x00, 0x00, 0x3E, 0x4l1, 0x41, 0x22, 0x00, 0x00, // “C”
25 0x00, 0x00, Ox7F, 0x41, 0x41, Ox3E, 0x00, 0x00, // “D”

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com NS

0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E”
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00, // "F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ~ ”
b
void shiftOut(int dPin, int cPin, int order, int val) {
int 1i;
for(i = 0; i < 8; i++){
digitalWrite (cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW) ;
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite (cPin, HIGH) ;
delayMicroseconds (10) ;

}
1
int main(void)
{
int i, j, k;
unsigned char x;
printf ("Program is starting ...\n”);
wiringPiSetup () ;
pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (j=0;j<500; j++) { //Repeat enough times to display the smiling face a period of
time

x=0x80;
for (i=0;i<8;i++) {
digitalWrite (latchPin, LOW) ;
~shiftOut (dataPin, clockPin, MSBFIRST, pic[i]);// first shift data of line
information to the first stage 74HC959
~shiftOut (dataPin, clockPin, MSBFIRST, ~x) ;//then shift data of column
information to the second stage 74HC959

digitalWrite (latchPin, HIGH) ;//Output data of two stage 74HC595 at the same

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

time
x>>=1; //display the next column
delay (1) ;

}
for (k=0;k<{sizeof (data)-8;k+t) { //sizeof (data) total number of “0-F” columns
for (j=0;j<20; j++) { //times of repeated displaying LEDMatrix in every frame, the
bigger the “j”, the longer the display time
x=0x80; //Set the column information to start from the first column
for (i=k; i<8+k;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;
_shiftOut (dataPin, clockPin, MSBFIRST, ~x) ;
digitalWrite (latchPin, HIGH) ;
x>=1;
delay (1) ;

}

return O;

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for (j=0; j<500; j++) {// Repeat enough times to display the smiling face a period of
time

x=0x80;

for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) ;
shiftOut (dataPin, clockPin, MSBFIRST, “x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (1) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on:138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.
for (k=0;k<sizeof (data)-8;k++) { //sizeof(data) total number of “0-F” columns
for (j=0; j<20; j++) {// times of repeated displaying LEDMatrix in every frame, the

“

bigger the “j”, the longer the display time

x=0x80; // Set the column information to start from the first column
for (i=k;i<8+k;i++) {

digitalWrite (latchPin, LOW) ;

shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;

shiftOut (dataPin, clockPin, MSBFIRST, "x) ;

digitalWrite (latchPin, HIGH) ;

x0>=1;

delay (1) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 20 LCD1602

In this chapter, we will learn about the LCD1602 Display Screen,

Project 20.1 12C LCD1602

There are LCD1602 display screen and the 12C LCD. We will introduce both of them in this chapter. But what
we use in this project is an [2C LCD1602 display screen. The LCD1602 Display Screen can display 2 lines of
characters in 16 columns. It is capable of displaying numbers, letters, symbols, ASCII code and so on. As shown
below is a monochrome LCD1602 Display Screen along with its circuit pin diagram

— AN LNON OO —

(o]

o

O
wn 8 o-—amswmwon~ia s
20293, 583888585888
AT [T2

I2C LCD1602 Display Screen integrates a 12C interface, which connects the serial-input & parallel-output
module to the LCD1602 Display Screen. This allows us to only use 4 lines to operate the LCD1602.

4 GND

A VCC |[mmmmm
_l SDA EEEER
44 scL =

12C LCD1602 Module

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default 12C address is
0x27(0x3F). You can also view the RPI bus on your I2C device address through command "i2cdetect -y 1"
(refer to the "configuration 12C" section below).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [k

Below is the PCF8574 chip pin diagram and its module pin diagram:
PCF8574 chip pin diagram: PCF8574 module pin diagram

Ao [1] ® [16] Vpp
A1 [2] [15] spa
A2 [3] 14] scL
Po [4] pcraszs [12] INT

p1 [5] PCFES4A 2] 7

GND

1T

[N e e = e S) N
=z
(9]

P2 6] [11] P6 i
P3 [7] [10] P5 15 i
8 g

Yss [£] 2] P PCI\II:!:574

PCF8574 module pins and LCD1602 pins correspond to each other and connected to each other:

GNDf—
VCC}—
SDA}—
SCL}—

<
I~
w
on [m) E
Z0oor-ranOO0OO00Oywer~mZ |5
O>>a0n0nn0zzzzaooooaO |y
—| || | w| o~ o | 2| = 2 T e
—| o oo | 0| o] | 0| | S| =) N P2 F| 0| ©
wn ow w o N T WIOONN~ + L
cn8>n:§ AoOOm@Omon 0
>S ¥ o0ooooooouwly (&
©
[m]
O
-

Because of this, as stated earlier, we only need 4 pins to control thel6 pins of the LCD1602 Display Screen
through the 12C interface.
In this project, we will use the I2C LCD1602 to display some static characters and dynamic variables.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x4
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

12C LCD1602 Module x1

—-- - -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com

www.freenove.com .

Circuit

Note that the power supply for 12C LCD1602 in this circuit is 5V.

Schematic diagram

GND

5

41|
2
3

SCL

[2C LCD1602 Module

3.3V 5V
3 1SDA1 TXDO }=-8~
S1scL1 RXDO |10
—L1GPIO4 GPIO18}12
AGpio17 GPI1023}16
131GpPi027 GPI1024 |18
121Gpi022 GPI1025}22
19 Imosi| CEO0}24—
21IMmiso CE1}25
231sCLK SCLO 28—
221SDAO0 GPIO12}32—
291GPI05 GPIO16}35—
S1GPios GP1020 38—
-331GPI013 GPI021}40
%‘GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

NOTE: It is necessary to configure 12C and install Smbus first (see chapter 7 for details)

® © 0 0 6 0 0 00 0 0 0 0 0 0 0O 0 0 e OO 0O S G GO O 0O S e 0 e e e
® © 0 0 0 © © 0 6 0 0 O 00O O O O 0 0 O G O O G GO O S G e e
® © 0 0 6 0 0 0 0 0 0 0O 0 G GO O S SO O O G O GO O e S e e
® © 0 6 © © © 0 0 0 0 O O O OO 0O O O G 0O OO SO O O e 0O e e
® 0 0 0 0 6 0 6 0 0 0 O O O G G O S GG G O O G S OGO O S GO e

& ©
- B
= <
- K
.l c
E °
=
- c
= o

2
- B
= BN
= ©
= o
Ly O
- o
- s
- =4
B o
= o
.l o
= B3
= B
- 4

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

B vwww.freenove.com D4 support@freenove.com [ESE]

Code

This code will have your RPi’s CPU temperature and System Time Displayed on the LCD1602.

C Code 20.1.1 12CLCD1602

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 20.1.1_ 12CLCD1602 directory of C code.

cd ~/Freenove Kit/Code/C_Code/20.1.1 12CLCD1602

2. Use following command to compile “I2CLCD1602.c” and generate executable file “I2CLCD1602".

gcc [12CLCD1602.c -0 12CLCD1602 -lwiringPi -lwiringPiDev

3. Then run the generated file “I2CLCD1602".

sudo ./I2CLCD1602

After the program is executed, the LCD1602 Screen will display your RPi's CPU Temperature and System Time.
So far, at this writing, we have two types of LCD1602 on sale. One needs to adjust the backlight, and the other
does not.

The LCD1602 that does not need to adjust the backlight is shown in the figure below.

If the LCD1602 you received is the following one, and you cannot see anything on the display or the display
is not clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen
can display clearly.

1 TS

e
VIV Y -
Canpd
N ——

-

The following is the program code:
1 #include <stdlib.h>
#include <stdio.h>

#include <wiringPi.h>
finclude <wiringPil2C. h>
#include <pcf8574. h>

O1 B~ W DN

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

#include <led.h>
f#include <time. h>

int pcf8574 address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F
#tdefine BASE 64 // BASE any number above 64

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin.
#define RS BASE+0

#tdefine RW BASE+1

#define EN BASE+2

#tdefine LED BASE+3

#define D4 BASE+4

#tdefine D5 BASE+5

#define D6 BASE+6

#tdefine D7 BASE+7

int ledhd;// used to handle LCD

void printCPUTemperature() {// sub function used to print CPU temperature
FILE *fp;
char str_temp[15];
float CPU temp;
// CPU temperature data is stored in this directory.
fp=fopen(”/sys/class/thermal/thermal zoneO/temp”, "r”);
fgets(str_temp, 15, fp) ; // read file temp
CPU temp = atof (str temp)/1000.0; // convert to Celsius degrees

printf ("CPU’ s temperature : %. 2f \n”, CPU _temp) ;

lcdPosition(1cdhd, 0, 0) ; // set the LCD cursor position to (0, 0)
ledPrintf (1cdhd, “CPU:%. 2£C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

}
void printDataTime() {//used to print system time
time t rawtime;
struct tm *timeinfo;
time (&krawtime) ;// get system time
timeinfo = localtime (&rawtime);//convert to local time
printf ("%s \n”, asctime(timeinfo)) ;
lcdPosition(ledhd, 0,1);// set the LCD cursor position to (0, 1)

ledPrintf (1cdhd, “Time:%02d:%02d:%02d”, timeinfo—>tm_hour, timeinfo—>tm min, timeinfo—>tm_sec) ;
//Display system time on LCD
}
int detectI2C(int addr) { //Used to detect i2c address of LCD
int fd = wiringPil2CSetup (addr);
if (fd < 0){

printf ("Error address : 0x%x \n”, addr) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [REEHI

return 0 ;
}
else{
if (wiringPil2CWrite (_fd, 0) < 0){
printf ("Not found device in address Ox%x \n”, addr):
return 0;
}
else
printf ("Found device in address O0x%x \n”, addr);

return 1 ;

}
int main(void) {
int 1i;
printf ("Program is starting ...\n”);
wiringPiSetup () ;
if (detectI2C(0x27)) {
pcf8574 address = 0x27;
Jelse if (detectI2C(0x3F)) {
pcf8574 address = 0x3F;
Jelsed
printf ("No correct 12C address found, \n”
“Please use command ~i2cdetect —y 1’ to check the I2C address! \n”
"Program Exit. \n”);
return —1;
}
pct8574Setup (BASE, pcf8574 address);//initialize PCF8574
for (1=0;1<8;i++) {

pinMode (BASE+i, OUTPUT) ; //set PCF8574 port to output mode
}
digitalWrite (LED, HIGH) ; //turn on LCD backlight
digitalWrite (RW, LOW) ; //allow writing to LCD

ledhd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7,0,0,0,0) ;// initialize LCD and return “handle”
used to handle LCD
if (ledhd == -1) {
printf (“lcdInit failed !7);

return 1;

}

while (1) {
printCPUTemperature () ;//print CPU temperature
printDataTime() ; // print system time
delay (1000) ;

}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

return 0;
1

From the code, we can see that the PCF8591 and the PCF8574 have many similarities in using the 12C interface
to expand the GPIO RPI.

First, define the 12C address of the PCF8574 and the Extension of the GPIO pin, which is connected to the
GPIO pin of the LCD1602. LCD1602 has two different i2c addresses. Set 0x27 as default.

int pcf8574 address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F
#define BASE 64 // BASE any number above 64

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin.
#tdefine RS BASE+0

#tdefine RW BASE+1

#tdefine EN BASE+2

#define LED BASE+3

#tdefine D4 BASE+4

#define D5 BASE+5

#define D6 BASE+6

#define D7 BASE+7

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn ON the LCD1602
backlight (without the backlight the Display is difficult to read).
pcf8574Setup (BASE, pcf8574 address) ;// initialize PCF8574
for(i=0;i<8;i++) {
pinMode (BASE+i, OUTPUT) ; // set PCF8574 port to output mode

1

digitalWrite (LED, HIGH) ; // turn on LCD backlight

Then use IcdInit() to initialize LCD1602 and set the RW pin of LCD1602 to 0 (can be written) according to

requirements of this function. The return value of the function called "Handle" is used to handle LCD1602".
ledhd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7,0,0,0,0) ;// initialize LCD and return

“handle” wused to handle LCD

Details about lcdInit():

This is the main initialization function and must be executd first before you use any other LCD functions.
Rows and cols are the rows and columns of the Display (e.g. 2, 16 or 4, 20). Bits is the number of how wide
the number of bits is on the interface (4 or 8). The rs and strb represent the pin numbers of the Display’s
RS pin and Strobe (E) pin. The parameters d0 through d7 are the pin numbers of the 8 data pins connected
from the RPi to the display. Only the first 4 are used if you are running the display in 4-bit mode.
The return value is the ‘handle’ to be used for all subsequent calls to the Icd library when dealing with that
LCD, or -1 to indicate a fault (usually incorrect parameter)
For more details about LCD Library, please refer to: https://projects.drogon.net/raspberry - pi/wiringpi/lcd-
library/
In the next “while”, two subfunctions are called to display the RPi's CPU Temperature and the SystemTime.
First look at subfunction printCPUTemperature(). The CPU temperature data is stored in the
"/sys/class/thermal /thermal zoneO/temp" file. We need to read the contents of this file, which converts it to

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/

B www.freenove.com D4 support@freenove.com

temperature value stored in variable CPU_temp and uses IcdPrintf() to display it on LCD.

void printCPUTemperature () {//subfunction used to print CPU temperature

FILE *fp;

char str temp[15];

float CPU temp;

// CPU temperature data is stored in this directory.
fp=fopen(”/sys/class/thermal/thermal zoneO/temp”, "r”);

fgets (str_temp, 15, fp) ; // read file temp

CPU temp = atof (str temp)/1000.0; // convert to Celsius degrees

printf ("CPU" s temperature : % 2f \n”, CPU_temp) ;

lcdPosition(1cedhd, 0, 0) ; // set the LCD cursor position to (0, 0)
ledPrintf (1edhd, “CPU:%. 2£C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

}

Details about IcdPosition() and IcdPrintf():

Set the position of the cursor for subsequent text entry.

These output a single ASCII character, a string or a formatted string using the usual print formatting
commands to display individual characters (it is how you are able to see characters on your computer

monitor).

Next is subfunction printDataTime() used to display System Time. First, it gets the Standard Time and stores
it into variable Rawtime, and then converts it to the Local Time and stores it into timeinfo, and finally displays
the Time information on the LCD1602 Display.

void printDataTime () {//used to print system time

time t rawtime;

struct tm *timeinfo;

time (&rawtime) ;// get system time

timeinfo = localtime (&rawtime);// convert to local time

printf ("%s \n”, asctime (timeinfo)) ;

lcdPosition(ledhd, 0,1):// set the LCD cursor position to (0, 1)

ledPrintf (1edhd, “Time:%d:%d:%d”, timeinfo->tm_hour, timeinfo—>tm min, timeinfo—>tm_sec) ;
//Display system time on LCD
}

support@freenove.com [l

193

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 21 Hygrothermograph DHT11

In this chapter, we will learn about a commonly used sensor called a Hygrothermograph DHT11.

Project 21.1 Hygrothermograph

Hygrothermograph is an important tool in our lives to give us data on the temperature and humidity in our
environment. In this project, we will use the RPi to read Temperature and Humidity data of the DHT11 Module.

Component List

Raspberry Pi (with 40 GPIO) x1 DHT11 x1 Resistor 10kQ x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x4

—-a. - -

Component knowledge

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output
digital signal has been calibrated by its manufacturer.

VCC Cnw
SDA

NC

GND

1234 DHT11

After being powered up, it will initialize in 1 second. Its operating voltage is within the range of 3.3V-5.5V.
The SDA pin is a data pin, which is used to communicate with other devices.

The NC pin (Not Connected Pin) are a type of pin found on various integrated circuit packages. Those pins
have no functional purpose to the outside circuit (but may have an unknown functionality during
manufacture and test). Those pins should not be connected to any of the circuit connections.

koo b

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [

Circuit

Schematic diagram

290
5.3\"_
3.3V 5V
—31spa1 TXDO |8~
i o e=etSCL 1 RXDO 10—
cmw% vee - LIGPI04 GPIO18}12—
SDA |2 111GPIO017 GPI023}-16
NC |3 31GPI027 GP1024}-18

GND 2 1GPI022 GPI025 /22
19 Imos| CE0 24—~
DHT11 214miso CE1}26
il 231scLk SCLO28-
- 2L1spao GPIO12}32-
291GPI05 GPI016}-36~
2311GPIO6 GP1020}-38
331GPIO13 GPI021 140

%‘GPIOW

GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

S =
-
- -
- (7]
- c
=~ B
- 7
- c
- [

o
- >
- w
B
- Ex
L O
i o
- B
- e
- o
- Q2
- o
- I
-]
]

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

The code is used to read the temperature and humidity data of DHT11, and display them.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 21.1.1_DHT11 directory of C code.

cd ~/Freenove Kit/Code/C_Code/21.1.1 DHT11

2. The code used in this project contains a custom header file. Use the following command to compile the
code DHT11l.cpp and DHT.cpp and generate executable file DHT11. The custom header file will be

compiled at the same time.
gcc DHT.cpp DHT11.cpp -0 DHT11 -lwiringPi
3. Run the generated file "DHT11".
sudo ./DHT11

After the program is executed, the Terminal window will display the current total number of read times, the

read state, as well as temperature and humidity values as is shown below:

surement counts : 1

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <stdint.h>

4 #include “DHT. hpp”

5

6 #tdefine DHT11 Pin 0 //define the pin of sensor

7

8 int main() {

9 DHT dht; //create a DHT class object

10 int chk, counts; //chk:read the return value of sensor; sumCnt:times of
sensor

11

12 printf ("Program is starting ...\n”);

13

reading

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

while (1) {
counts++; //counting number of reading times
printf ("Measurement counts : %d \n”, counts);
for (int i = 0; i < 15; i++){
chk = dht. readDHT11 (DHT11 Pin); //read DHTI1l and get a return value. Then
determine whether data read is normal according to the return value
if (chk == DHTLIB OK) {
printf ("DHT11, OK! \n”);
break;
}
delay (100) ;
}
printf ("Humidity is %. 2f %%, \t Temperature is %. 2f *C\n\n”, dht.humidity,
dht. temperature) ;
delay (2000) ;
}

return 1;

}
In this project code, we use a custom library file "DHT.hpp". It is located in the same directory with the program
files "DHT11.cpp” and "DHT.cpp"”, and methods for reading DHT sensor are provided in the library file. By
using this library, we can easily read the DHT Sensor. First, we create a DHT class object in the code.
[] owrodngg
Then in the "while" loop, use chk = dht.readDHT11 (DHT11_Pin) to read the DHT11, and determine whether
the data read is normal according to the return value "chk". If the value is OK, end for loop and move on.
Otherwise, try 15 times in total. Then use variable counts to record number of times to read.
while (1) {

counts++; //counting number of reading times

printf ("Measurement counts : %d \n”, counts);
for (int i =0; i < 15; i++){
chk = dht. readDHT11 (DHT11 Pin); //read DHT1l and get a return value. Then
determine whether data read is normal according to the return value
if (chk == DHTLIB OK) {
printf ("DHT11, OK! \n”);
break;
}
delay (100) ;
}
printf ("Humidity is %. 2f %%, \t Temperature is %. 2f *C\n\n”, dht. humidity,
dht. temperature) ;
delay (2000) ;

Finally display the results:
i printf (CHumidity is % 2F %% \t Temperature is % 2f *C\n\n’, dht. humidity, dht. temperature) ; |

support@freenove.com [l

197

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Library file "DHT.hpp" contains a DHT class and this public member function int readDHT11 (int pin) is used

to read sensor DHT11 and store the temperature and humidity data read to member variables double

humidity and temperature. The implementation method of the function is included in the file "DHT.cpp".
#tdefine DHT H

#include <wiringPi.h>
#include <stdio.h>
#include <stdint.h>

////read return flag of sensor
#define DHTLIB OK 0
#define DHTLIB ERROR CHECKSUM -1
#define DHTLIB_ERROR_TIMEOUT -2
#define DHTLIB_INVALID VALUE -999

#define DHTLIB_DHT11_WAKEUP 20

#define DHTLIB_DHT WAKEUP 1
#define DHTLIB_TIMEOUT 100
class DHT{
public:
DHT () ;
double humidity, temperature; //use to store temperature and humidity data read
int readDHT110nce (int pin); //read DHT11
int readDHT11(int pin); //read DHT11
private:
uint8 t bits[5]; //Buffer to receiver data
int readSensor (int pin, int wakeupDelay) ; //

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com KR}

Chapter 22 Matrix Keypad

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards,
which integrates a number of Push Button Switches as Keys for the purposes of Input.

Project 22.1 Matrix Keypad

In this project, we will attempt to get every key code on the Matrix Keypad to work.

Component List

Raspberry Pi (with 40 GPIO) x1 4x4 Matrix Keypad x1
GPIO Expansion Board & Wire x1
Breadboard x1

Jumper wire

— - -

Resistor 10kQ x4

Component knowledge

4x4 Matrix Keypad
A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

200 support@freenove.com www.freenove.com [l

Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module):

4x4 Keypad

4] 3] 2| 1]

[for [~

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one

8 1

pin and this is the same for the columns. Such efficient connections reduce the number of processor ports
required. The internal circuit of the Keypad Matrix is shown below.

1 2 3 A
— e — [
4 5 6 B
RS el e [s
— Oj — 0—1 — 01 — 0—1 =
7 8 9 C
e [R e R R
-— D—| -— D—J -— D—l *—0 D_l 6
*
*— o—I — 01 *—0 01 —0 o—J 5

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the
state of each key's position by column and row. Take column scanning method as an example, send low level
to the first 1 column (Pinl), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed.
Then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can
get the state of all of the keys.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [

Circuit

Schematic diagram

10kQ
R2
10kQ

R3
10kQ

R1

o AAANA R4
B 10kQ

= 33V 5V A |
[SDA1 TXDO =8
—5lscL1 RXDO 10— axd Keypad
—LJGPI04 GPI018}12 Emmm
GPIoT7 111GPI017 GPI023}-16 AT 1T
GPI027 13 IGPI027 GP1024 118 ST T
GPI022 15 1GP1022 GP1025122 2 HEER
MOST 19 Imos| CEQ 24
21Imiso CE1}26
231scLK scLok28.
271SDA0 GPIO12}32—
291GPI05 GPI016 |35~
S11GPIos GP1020}-38
-331GPI013 GPI021}40
_ﬁa%eplow
GP1026 Raspberry Pi
GPIO Extension Shield
GND

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

. LR e o e 0 e s o0 LI]
° . e o . . ° e ©e o 0 00 LI
g
£
(2]
- ®© e 00 0000000000000 000
o ® e o 00 0000000000000 0
a 280008 e ® oo 00000 00000000000
c So QAvo T
o S ZSSS ®© o 09 00090 0000000000
X AU SO S == ©©o 0000000000000 000000
w aao
o (LACRL)
= Mmoo
o -
[0} 9990 ® © o 9 9 0 0 0 00 0 0 0 00 0 0 00 e e 0
— a.oao = ® © 9 00 00 0000 00 00 000 00 e 0
o (URURL AL
R RE R ®© 9 0000 0000000000000 000
E‘ e o 0 © 60 000900009 0000000000 e
g o e e ® © 9000900009 00000000000 e
Q.
2]
3]
o . e o 0o 0 . e e ® e 0o 00 o
. o0 0 e oo 00 ® e 0 00 ® o

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

This code is used to obtain all key codes of the 4x4 Matrix Keypad, when one of the keys is pressed, the key
code will be displayed in the terminal window.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via:
1. Use cd command to enter 22.1.1_MatrixKeypad directory of C code.
cd ~/Freenove_Kit/Code/C_Code/22.1.1 MatrixKeypad
2. Code of this project contains a custom header file. Use the following command to compile the code
MatrixKeypad.cpp, Keypad.cpp and Key.cpp generate executable file MatrixKeypad. The custom header
file will be compiled at the same time.
gcc MatrixKeypad.cpp Keypad.cpp Key.cpp -o MatrixKeypad -IwiringPi
3. Run the generated file "MatrixKeypad".
sudo ./MatrixKeypad
After the program is executed, pressing any key on the MatrixKeypad, will display the corresponding key code
on the Terminal. As is shown below:
Program 1
You P

=
E
=
=
=
=
=
=
=
E
E
=
=
=
F.

The following is the program code:

1 #include “Keypad. hpp”

2 #include <stdio.h>

3 const byte ROWS = 4; //four rows

4 const byte COLS = 4; //four columns

5 char keys[ROWS][COLS] = { //key code

6 1,72,°3,°/N},

7 {4,°5,76,'8}

8 {7,78,79,'C}

9 {=,70,#,D}

10 |}

11 byte rowPins[ROWS] = {1, 4, 5, 6 }; //define the row pins for the keypad
12 byte colPins[COLS] = {12,3, 2, 0 }; //define the column pins for the keypad

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

//create Keypad object
Keypad keypad = Keypad(makeKeymap (keys), rowPins, colPins, ROWS, COLS):

int main() {

printf ("Program is starting ... \n”);

wiringPiSetup () ;

char key = 0;
keypad. setDebounceTime (50) ;
while (1) {
key = keypad. getKey () ; //get the state of keys
if (key) { //if a key is pressed, print out its key code
printf ("You Pressed key : %c \n”, key) ;

}

return 1;

}
In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp". They are located in the same
directory with program files "MatrixKeypad.cpp”, "Keypad.cpp” and "Key.cpp”. The Library Keypad is
“transplanted” from the Arduino Library Keypad. This library file provides a method to read the Matrix
Keyboard’s input. By using this library, we can easily read the pressed keys of the Matrix Keyboard.
First, we define the information of the Matrix Keyboard used in this project: the number of rows and columns,
code designation of each key and GPIO pin connected to each column and row. It is necessary to include the

header file "Keypad.hpp".

#include “Keypad. hpp”

#include <stdio.h>

const byte ROWS = 4; //four rows

const byte COLS

char keys[ROWS][COLS] = { //key code
{r, 2,3, 1},

47 //four columns

{747’757’767’7B7}’
{777’787’797’7(:7}’
{7*7’707’7#7’71)7}

b

byte rowPins[ROWS]

byte colPins[COLS]
Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard.
- Keypad keypad = Keypad(makeKeymap (keys), rowPins, colPins, ROWS, COLS); l
Set the debounce time to 50ms, and this value can be set based on the actual characteristics of the keyboard's

{1, 4, 5, 6}; //connect to the row pinouts of the keypad
{12,3, 2, 0}; //connect to the column pinouts of the keypad

flexibly, with a default time of 10ms.

i keypad. setDebounceTime (50) ; |

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [RAGS

In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", then be displayed.
while (1) {

key = keypad. getKey();: //get the state of keys

if (key) { // if a key is pressed, print out its key code
printf("You Pressed key : % \n”,key);

}
The Keypad Library used for the RPi is transplanted from the Arduino Keypad Library. And the source files can

be obtained by visiting http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the

function and method of all classes, functions, variables, etc. are the same as the original library. Partial contents
of the Keypad library are described below:

Keypad (char *userKeymap, byte *row, byte *col, byte numRows, byte numCols) ;

Constructor, the parameters are: key code of keyboard, row pin, column pin, the number of rows, the
number of columns.

char getKey();

Get the key code of the pressed key. If no key is pressed, the return value is NULL.
void setDebounceTime (uint) ;

Set the debounce time. And the default time is 10ms.

void setHoldTime (uint) ;

Set the time when the key holds stable state after pressed.

bool isPressed(char keyChar);

Judge whether the key with code "keyChar" is pressed.

char waitForKey();

Wait for a key to be pressed, and return key code of the pressed key.

KeyState getState();

Get state of the keys.

bool keyStateChanged() ;

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the
opening file "Keypad.hpp".

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

X support@freenove.com

www.freenove.com .

Chapter 23 Infrared Motion Sensor

In this chapter, we will learn a widely used sensor, Infrared Motion Sensor.

Project 23.1 PIR Infrared Motion Detector with LED Indicator

In this project, we will make a Motion Detector, with the human body infrared pyroelectric sensors.
When someone is in close proximity to the Motion Detector, it will automatically light up and when there is

no one close by, it will be out.

This Infrared Motion Sensor can detect the infrared spectrum (heat signatures) emitted by living humans and

animals.

Component List

Raspberry Pi (with 40 GPIO) x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper x5

—-a. - -

HC SR501 x1 LED x1

Resistor 220Q x1

Component Knowledge

The following is the diagram of the Infrared Motion Sensor (HC SR-501) a PIR Sensor:

Top Bottom
y o™ ‘\\\
V. A\
£ \
[|
\ |
—S+

Schematic

als
2

3]’ %’))

Infrared Motion Sensor(HC SR501)

w4+

Description:

1. Working voltage: 5v-20v(DC) Static current; 65UA.
2. Automatic Trigger. When a living body enters into the active area of sensor, the module will output high

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [

level (3.3V). When the body leaves the sensor’s active detection area, it will output high level lasting for
time period T, then output low level(OV). Delay time T can be adjusted by the potentiometer R1.

3. Induction block time: the induction will stay in block condition and does not induce external signal at
lesser time intervals (less than delay time) after outputting high level or low level

4. |Initialization time: the module needs about 1 minute to initialize after being powered ON. During this
period, it will alternately output high or low level.

5. One characteristic of this sensor is when a body moves close to or moves away from the sensor’'s dome
edge, the sensor will work at high sensitively. When a body moves close to or moves away from the
sensor's dome in a vertical direction (perpendicular to the dome), the sensor cannot detect well (please
take note of this deficiency). Actually this makes sense when you consider that this sensor is usually placed
on a celling as part of a security product. Note: The Sensing Range (distance before a body is detected)
is adjusted by the potentiometer.

We can regard this sensor as a simple inductive switch when in use.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com [l

Circuit

Schematic diagram

LED1

R1

220Q

+

L8
110
12
116
118
122
124
126
128
132
136
138
140

=

BRI RLINERS
XX00000000000 &
Faaoaa Naaan
> O00o (CIOCIONV))
n e}
7
©
> S e
T __ ==Ky 0 o228
5900059200000
goooaoaO0lonaaooon
NNOOOOZS=ZNnNnOOOOO

GPIO Extension Shield

GND

l

-3
-5
A
11
13
5]
19
21

+ 0

Infrared Motion Sensor(HC SR

1
2
sm)l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

PId1ysS uoisuaix3 OIdo Id Aueqdsey

® 9 9 0 0 0 0 0 0 0 0 0 ° 0 O OGO O OO OO O O OO OO e 0

®l70IdD AaNO®
#0Z0Id9 9Z0Id9®
#9101d9 6L0Id9®
®*AND €LOIdD®
$710Id9 90I49*
*aND SOIdo®

How to use this sensor?

Bottom

Top

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [RAGE]

Description:

1. You can choose non-repeatable trigger modes or repeatable modes.
L: non-repeatable trigger mode. The module output high level after sensing a body, then when the
delay time is over, the module will output low level. During high level time, the sensor no longer actively
senses bodies.
H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body
leaves. After this, it starts to time and output low level after delaying T time.

2. Rl is used to adjust HIGH level lasting time when sensor detects human motion, 1.2s5-320s.

3. R2is used to adjust the maxmum distance the sensor can detect, 3~5m.

Here we connect L and adjust R1 and R2 like below to do this project.

Put you hand close and away from the sensor slowly. Obsever the LED in previous circuit.

It need some time between two detections.

-

Code

In this project, we will use the Infrared Motion Sensor to trigger an LED, essentially making the Infrared Motion
sensor act as a Motion Switch. Therefore, the code is very similar to the earlier project "Push Button Switch
and LED". The difference is that, when Infrared Motion Sensor detects change, it will output high level; when

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

button is pressed, it will output low level. When the sensor output high level, the LED turns ON, or it will turn
OFF.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 23.1.1_SenselLED directory of C code.

cd ~/Freenove Kit/Code/C_Code/23.1.1 SenselLED

2. Use following command to compile "SenselLED.c" and generate executable file "SenselLED".

gcc SenseLED.c -0 SenseLED -lwiringPi

3. Run the generated file "SenseLED".

sudo ./SenseLED

After the program is executed, wait 1 minute for initialization. Then move away from or move closer to the
Infrared Motion Sensor and observe whether the LED turns ON or OFF. The Terminal window will continuously
display the state of LED. As is shown below:

The following is the program code:

#include <wiringPi.h>
2 #include <stdio.h>
3
4 #define ledPin 1 //define the ledPin
5 #define sensorPin 0 //define the sensorPin
6
7 int main(void)
8 {
9 printf ("Program is starting ... \n”);
10
11 wiringPiSetup () ;
12
13 pinMode (1edPin, OUTPUT) ;
14 pinMode (sensorPin, INPUT) ;
15
16 while (1) {
17
18 if(digitalRead (sensorPin) == HIGH) { //if read value of sensor is HIGH level
19 digitalWrite(ledPin, HIGH); //make led on
20 printf(“led turned on >>> \n”);
21 }
22 else {
23 digitalWrite(ledPin, LOW); //make led off

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [ANI

printf (“led turned off <<< \n”);

}

return 0;

}
It can be seen that the code is based on the same principles of the "ButtonLED" code in addition to
determining the level of the input signal.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 24 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance.

Project 24.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component List

Raspberry Pi (with 40 GPIO) x1 Ultrasonic Module x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x4 Resistor 1kQ x3
— - -

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will be reflected when they encounter
any obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted
to when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after
an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave's journey
from being transmitted to being received. Because the speed of sound in air is a constant, and is about
v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2.

RIC C CCCC(
T])))))))

| < S >| 2S=Vit,

The Ultrasonic Ranging Module integrates a both an ultrasonic transmitter and a receiver. The transmitter is
used to convert electrical signals (electrical energy) into high frequency (beyond human hearing) sound waves
(mechanical energy) and the function of the receiver is opposite of this. The picture and the diagram of the
Ultrasonic Ranging Module are shown below:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

) E
i kx(«
HC-SR04
Pin description:
VCC power supply pin
Trig trigger pin
Echo Echo pin
GND GND
Technical specs:
Working voltage: 5V Working current: 12mA
Minimum measured distance: 2cm Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to transmit
ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned
ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level
in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This is done
constantly.

10us

Trigger signal
(Input)

Echo time

Echo signal
(Output)

Distance = Echo time x sound velocity / 2.

support@freenove.com [l

213

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com

www.freenove.com [l

Circuit

Note that the voltage of ultrasonic module is 5V in this circuit.

Schematic diagram

3.3V
' SDA1
'SCL1

5V

TXDO
RXDO

=
¢
 GPI04 12
GPIO17 16
(GPI027
(GPI1022

'MOSI

GPIO18
GPIO23
GPI1024
GP1025

CEO

VvCC
Trig
Echo
GND

MISO
'SCLK

' SDAO

' GPIO5
GP106
GPIO13
GPIO19

(GP1026 Raspberry Pi

GPIO Extension Shield
GND

CE1
SCLO
GPIO12
GPIO16
GPI1020
GPI021

1kQ

REEEBNRREEEE
PEFRPRRR

HC-SR04

Hardware connection. If you need any support, please feel free to contact us via

: support@freenove.com

06 GPIO12e

013
019 GPIO16e

026 GPIO20s

LY #GPI022 GPIO23e

LY #GPIO17 GPIO18« O
DY eMISO GPIO25#

~

"g 8 7 o B R R
har =4~ wv [=] [=}

%égggg%g §s§~§§§§5 e e e 0000000000000

R AR R R R R E E E R E EEEEEREYs ¢ 0 6 0o s o000 0000000000

R e A S S A S S A I

D e e 0000000000000

N e e e e e eeeee eeeee G esee seeee e ‘
l ® e © e e e e eeese eeeee eeeee eeeee eeee
oo o000 'o-'ooootco-ooo-., © 0900000000000 e s GGG OGO
e e e 000 ® 6 06 00 00 0000 e 0 e 0 e 000G e eE e e e e
XX T
800888009208 00800e o---w.ooooooo.....oooooo.o.oo...o1
“"‘“ZQQZSZ BSD‘ZZ s LR ® 900 000000000000
u.’féu:w wo SV = ® e 000 0000000000000 e
o o

R R R R R R R R R R R R R R REERRERERERERERRE R]

Raspberry Pi GPIO Extension Shield

4

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 24.1.1_UltrasonicRanging directory of C code.

cd ~/Freenove_Kit/Code/C_Code/24.1.1_UltrasonicRanging

2. Use following command to compile "UltrasonicRanging.c" and generate executable file
"UltrasonicRanging".

gcc UltrasonicRanging.c -o UltrasonicRanging -lwiringPi

3. Then run the generated file "UltrasonicRanging".

sudo ./UltrasonicRanging

After the program is executed, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the

surface of an object (try using your hand). The distance between the ultrasonic module and the object will be

displayed in the terminal. As is shown below:

The following is the program code:

#include <wiringPi.h>

2 #include <stdio.h>

3 #include <sys/time.h>

4

5 ftdefine trigPin 4

6 #define echoPin 5

7 #tdefine MAX DISTANCE 220 // define the maximum measured distance

8 #tdefine timeOut MAX DISTANCE*60 // calculate timeout according to the maximum measured
distance

9 //function pulseln: obtain pulse time of a pin

10 int pulseln(int pin, int level, int timeout);

11 float getSonar() { //get the measurement result of ultrasonic module with unit: cm

12 long pingTime;

13 float distance;

14 digitalWrite(trigPin, HIGH); //send 10us high level to trigPin

15 delayMicroseconds (10) ;

16 digitalWrite(trigPin, LOW) ;

17 pingTime = pulseln(echoPin, HIGH, timeOut); //read plus time of echoPin

18 distance = (float)pingTime * 340.0 / 2.0 / 10000.0; //calculate distance with sound speed
340m/s

19 return distance;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

int main() {

printf ("Program is starting ... \n”):

wiringPiSetup () ;

float distance = 0;

pinMode (trigPin, OUTPUT) ;

pinMode (echoPin, INPUT) ;

while (1) {
distance = getSonar() ;
printf ("The distance is : % 2f cm\n”, distance) ;
delay (1000) ;

}

return 1;

First, define the pins and the maximum measurement distance.

#define trigPin 4

#define echoPin 5

#tdefine MAX DISTANCE 220 //define the maximum measured distance
If the module does not return high level, we cannot wait for this forever, so we need to calculate the time
period for the maximum distance, that is, time Out. timeOut= 2*MAX_DISTANCE/100/340%x1000000. The
result of the constant part in this formula is approximately 58.8.
I cdefine tineOut MAX DISTANCEX60

Subfunction getSonar () function is used to start the Ultrasonic Module to begin measurements and return
the measured distance in cm units. In this function, first let trigPin send 10us high level to start the Ultrasonic
Module. Then use pulseln () to read the Ultrasonic Module and return the duration time of high level. Finally,
the measured distance according to the time is calculated.

float getSonar() { // get the measurement results of ultrasonic module, with unit: cm

long pingTime;

float distance;

digitalWrite(trigPin, HIGH); //trigPin send 10us high level

delayMicroseconds (10) ;

digitalWrite(trigPin, LOW) ;

pingTime = pulseln(echoPin, HIGH, timeOut) ; //read plus time of echoPin

distance = (float)pingTime * 340.0 / 2.0 / 10000.0; // the sound speed is 340m/s, and
calculate distance

return distance;

Lastly, in the while loop of main function, get the measurement distance and display it continually.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com AN

while (1) {
distance = getSonar() ;
printf ("The distance is : % 2f cm\n”, distance) ;
delay (1000) ;

}

About function pulseIn():

Return the length of the pulse (in microseconds) or 0 if no pulse is completed before the timeout (unsigned
long).

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Chapter 25 Attitude Sensor MPU6050

In this chapter, we will learn about a MPUG050 Attitude sensor, which integrates an Accelerometer and

Gyroscope.

Project 25.1 Read a MPU6050 Sensor Module

In this project, we will read Acceleration and Gyroscope Data of the MPU6050 Sensor.

Component List

Raspberry Pi (with 40 GPIO) x1 MPUG050 x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x4

—-a. - -

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [AR]

Component knowledge

MPU6050

MPUB050 Sensor Module is a complete 6-axis Motion Tracking Device. It combines a 3-axis Gyroscope, a 3-
axis Accelerometer and a DMP (Digital Motion Processor) all in a small package. The settings of the
Accelerometer and Gyroscope of MPU6050 can be changed. A precision wide range digital temperature
sensor is also integrated to compensate data readings for changes in temperature, and temperature values
can also be read. The MPU6050 Module follows the 12C communication protocol and the default address is
0x68.

W ®vcc 4 L VCC

Pl ® cno $. v GND

3 KR 2676 3 SCL

4 (OB 4 SDA

Y (@ xDA i XDA

Y @t ypysoso % XCL

Il ® Apo -~ ADO

e @ B1INT

MPU6050
The port description of the MPU6050 Module is as follows:
Pin name Pin number Description
VCC 1 Positive pole of power supply with voltage 5V
GND 2 Negative pole of power supply
SCL 3 [2C communication clock pin
SDA 4 I2C communication data pin
XDA 5 I2C host data pin which can be connected to other devices.
XCL 6 I2C host clock pin which can be connected to other devices.
ADO 7 I2C address bit control pin.
Low level: the device address is 0x68
High level: the device address is 0x69

INT 8 Output interrupt pin

For more detail, please refer to the MPU6050 datasheet.

MPUGB050 is widely used to assist with balancing vehicles, robots and aircraft, mobile phones and other
products which require stability to control stability and attitude or which need to sense same.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Circuit

Note that the power supply voltage for MPU6050 module is 5V in this circuit.

Schematic diagram

av

vee :121

GND H
3

|| 3.3V 5V
sCL ><35:30A1 TXDO (-8
SDA |4 SCL1 RXDO -1
XDA }-> —L1GPIO4 GPIO18}12
xcL & 11L1GPIO17 GPI023}-16
ADO |2 131GpI027 GPI024|-18
INT }& ,g GPI022 GPI025 22—
19 Imos| CEOQ 24—
MPUG050 -ZJ—-MISO CE1 .Zﬁ_
231scLK scLo 28~
2L1SDAO GPIO12}32
291GPI0O5 GPIO16 36—
-311GPI06 GPI1020 |38
-231GPI013 GPI021 40
%-GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

- ki LI LN e o o 0o o
- T
- B
= »
: - ® o 0 0 0 00 . . .
- .9 ® 0 0 0 00 0P E e
: g ® 0 0 0 0 0 0P e N
: 2 ® & 0 0 0 0 00 e SN
= u><.| © e e 0 0 000 0 0 o o0 .
-
- o
: 0 hhhhh LA L B B L D B I B B B
- omm ® & 9 0 0 0 0 0 e e e
: o ® ® 0 0 9 0 P PSSO SN S EYO
: ? LI L I I D B D B R R IR L B B B
: g ® ® 0 9 0 0 0 P PSS S OSSNSO
- O
- 7]
- ©
: m
: . . o o o 0 0 ® o o 0 0 . Ll

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project, we will read the acceleration data and gyroscope data of MPU6050, and print them out.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
Use cd command to enter 25.1.1_MPUG050RAW directory of C code.

1.

cd ~/Freenove Kit/Code/C_Code/25.1.1 MPU6050
2. Use following command to compile "MPUB050RAW.c", "MPU6050.cpp” and "I2Cdev.cpp"”, and generate

executable file "MPUBG050RAW".
gcc MPUB050RAW.cpp MPU6050.cpp 12Cdev.cpp -0 MPUG6050RAW

3. Then run the generated file "MPUG6050RAW".
sudo ./MPUG050RAW
After the program is executed, the Terminal will display active accelerometer and gyroscope data of the

MPUGB050, as well as the conversion to gravity acceleration and angular velocity as units of data. As shown in
the following figure:

The following is the program code:

© 00 3 O Ol B~ W N =

— =
— O

—_ = =
O1 = W DD

#include <stdio.h>

#include <stdint.h>
#include <unistd.h>
#tinclude ”“I12Cdev. h”
#include “MPU6050. h”

MPU6050 accelgyro; //creat MPU6050 class object
intl6 t ax, ay, az; //store acceleration data
intl6 t gx, gy, gz; //store gyroscope data

void setup() {
// initialize device
printf ("Initializing 12C devices...\n”);

accelgyro. initialize(); //initialize MPU6050

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

// verify connection
printf ("Testing device connections...\n”);
printf (accelgyro. testConnection() ? "MPU6050 connection successful\n” : “MPU6050

connection failed\n”);

}

void loop() {
// read accel/gyro values of MPU6050
accelgyro. getMotion6 (&ax, &ay, &az, &gx, &gy, &gz);
// display accel/gyro x/y/z values
printf (“a/g: %6hd %6hd %6hd %6hd %6hd %6hd\n”, ax, ay, az, gx, gy, gz) ;
printf ("a/g: %.2f g %.2f g %.2f ¢ % 2f d/s %. 2f d/s %. 2f d/s
\n”, (float)ax/16384, (float)ay/16384, (float)az/16384
(float) gx/131, (float)gy/131, (float) gz/131) ;

}

int main()

{
setup () ;
while (1) {

loop();

}
return 0;

}

Two library files "MPU6050.h" and "I2Cdev.h" are used in the code and will be compiled with others. Class
MPUG050 is used to operate the MPU6050 Sensor. When used, first it initiates an object.

- MPU6050 accelgyro;

In the setup function, the MPUG050 is initialized and the result of the initialization will be tested.

void setup() {
// initialize device
printf("Initializing I2C devices...\n”);
accelgyro. initialize(); //initialize MPU6050

// verify connection
printf("Testing device connections...\n”);
printf (accelgyro. testConnection() ? “MPU6050 connection successful\n” : “MPU6050
connection failed\n”);
}
In the loop function, read the original data of MPU6050, display them and then convert the original data into
the corresponding acceleration and angular velocity values, then display the converted data out.
void loop({

// read raw accel/gyro measurements from device

accelgyro. getMotion6 (&ax, &ay, &az, &gx, &gy, &gz);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

// display accel/gyro x/y/z values
printf(“a/g: %6hd %6hd %6hd %6hd %6hd %6hd\n”, ax, ay, az, gx, gy, g2) ;
printf("a/g: %. 2f g %.2f g % 2f g % 2f d/s % 2f d/s %. 2f d/s
\n”, (float) ax/16384, (float)ay/ 16384, (float)az/16384,
(float) gx/131, (float) gy/131, (float)gz/131) ;

}
Finally, the main functions, called setup function and loop function respectively.
int main()
{
setup() ;
while (1) {
loop() ;
}
return 0;

}

About class MPU6050:

This is a class library used to operate the MPU6050, which can directly read and set the MPU6050. Here are
its functions:

MPU6050 () /MPU6050 (uint8_t address):

Constructor. The parameter is |2C address, and the default 12C address is 0x68.

void initialize();

Initialization function, used to wake up MPU6050. Range of accelerometer is +2g and range of gyroscope
is +250 degrees/sec.

void getMotion6(intl6 t* ax, intl6 t* ay, intl6 t* az, intl6_t* gx, intl6_t* gy, intl6_t* gz);
Get the original data of accelerometer and gyroscope.

intl16_t getTemperature () ;

Get the original temperature data of MPU6050.

For details about more relevant member functions, pleases refer to MPU6050.h or visit:
https://github.com/jrowberg/i2cdevlib

support@freenove.com [l

223

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/jrowberg/i2cdevlib

X support@freenove.com www.freenove.com [l

Chapter 26 Soldering a Circuit Board

From previous chapters, we have learned about electronic circuits and components and have built a variety
of circuits using a Breadboard device, which is not designed to be used permanently. We now will take a
further step to make permanent projects using a Perfboard (a type of Prototype Circuit Board). Note:
Perfboard is a stiff, thin sheet of insulated material with holes bored on a grid. The grid is usually a squared
off shape with a spacing of 0.1 inches. Square copper pads cover these holes to make soldering electronic
components easier.

To finish this chapter, you need to prepare the necessary soldering equipment, including an electric soldering
iron (or soldering pencil) and solder. We have already prepared the Perfboard for you.

CAUTION: Please use extreme caution and attention to safety when you operate soldering tools used
in these projects.

Project 26.1 Soldering a Buzzer

You should be familiar with the Buzzer from our previous project. We will solder a permanent circuit that
when a Push Button Switch is pressed a Buzzer sounds

Note: This circuit does not require programming and will work when it is powered ON. When the button is
not pressed and the Buzzer is not in use, there is no power consumption.

You can install it on your bicycle, your bedroom door or any other place where you want a Buzzer.

Component list

Female Pin Header | LED x1 Resistor 220Q x1 Active buzzer x1 Push button x1

X2

AA Battery Holder x1 and AA Batteries x2

AA Battery |
]

| p— Adalaeg vy _||_

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Circuit

We will solder the following circuit on the Perfboard.

Schematic diagram Hardware connection.
If you need any support, please feel free to contact
us via: support@freenove.com

+—& DDA

LED1
&

Buzzer

R1
2200

R

Note: If you are new to soldering electronic components on any type of circuit board we strongly recommend
that you watch some instructional How-To videos by doing an Internet search and practice your soldering
technique before attempting to solder the following projects. Some components can be damaged by
exposure to excessive heat for prolonged times and there are various techniques you can learn that will help
with making neater solder joints.

Solder the Circuit

Insert the components in the Perfboard following the Hardware Connection image as a general visual guide.
Insert the pins of the components (all from the same side) so that you have only the components on one side
of the Perfboard and the pins on the other. Then from the side with the pins carefully solder the circuit on the
backside without having excess solder shorting out any portions of the circuit.

support@freenove.com [l

225

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com

www.freenove.com .

Here is a diagram after soldering from both sides of the Perfboard:

Front

ONIHSYM
H314V
v3s
JAOW3H

fe
-~
E
=
Q
o
o
| B
7]
L
] (=
| <
=«
»

I HDJd3IAQDO8Y

Back

2
C

T T .ToTe¥caYare

™

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D« support@freenove.com Al

Test the Circuit

Connect the circuit board to a power supply (3~5V). You can use Raspberry Pi board or your 2 AA Cell
Battery Box as the power supply.

»

Anode (-)

REMOVE
SEAL

AFTER
WASHING

03
~{04
05
08
o7
~{o8
S110 |
S
|12

Cathode (+)

Press the Push Button Switch after connecting the power and then the buzzer will sound.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

Project 26.2 Soldering a Flowing Water Light

You should be familiar with the Flowing Water Light from our previous project. We will solder a permanent
circuit using improved code to make a more interesting Flowing Water Light.

Component List

Female Pin Header x5 | Resistor 220Q x8 LED x8 74HC595 x1

Circuit

Solder the following circuit on the Perfboard.

Schematic diagram Hardware connection

,
200 N LEDY

v R2 U
XN
2200 |1 LED2

v

R3
2200 "N LED3
V.

R4
2200 "\ LED4

—
e

Q1 vee
Q Qo

@3 ps 12
Qa OE

5
200 N LEDS

R6
N
220Q |1 LEDS

?fg

\ Qs ST.CP

R7
200 "\ LED? Q6 SHCP [
= Q7 MR [
2200 N, LEDS GND Q7' [+

74HC595

oo U B wi N

h

Soldering the Circuit

Insert the components in the Perfboard, and solder the circuit on the back per earlier instructions.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com VA

@ I e~ e

C NG RN
“aanssems e

Here is a diagram after soldering from both sides of the Perfboard:

Front Back

¢ € 5

38588

X M AN LSHOdONNTY FIHNJIINIAIIHIAY

Connecting the Circuit

Connect the board to Raspberry Pi with jumper wire in the following way.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

ABUDEFUGHIJKLMNOPORSTUV WX

£2¢£48
| |

w o ()]
w2393
SUOO.O
Ul NN -
< N NN

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Code

This now will be the third time we have made the Flowing Water Light. In this project, we will solder a
completely new circuit for Flowing Water Light. Additionally, the program is also different from the previous
ones we have used. When this light flows, it will have a long “tail”.

C Code 26.2.1 LightWater03

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 26.2.1_LightWater03 directory of C code.

2. Use following command to compile “LightWater03.c” and generate executable file “LightWater03”.

3. Then run the generated file “LightWater03".

After the program is executed, the LEDs will light up in the form of flowing water with a long “tail”.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <unistd. h>

#define dataPin 0 //DS Pin of 74HC595 (Pinl4)
#define latchPin 2 //ST_CP Pin of 74HC595(Pinl2)
#define clockPin 3 //SH.CP Pin of 74HC595(Pinll)
//Define an array to store the pulse width of LED, which will be output to the 8 LEDs in
order.
const int pluseWidth[]={0,0,0,0,0,0,0,0,64, 32, 16,8,4,2,1,0,0,0,0,0,0,0, 0} ;
void outData(int§ t data) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, LSBFIRST, data) ;
digitalWrite (latchPin, HIGH) ;

void shiftOut (int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i <8; i++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ; // 10 times longer then earlier exercise
}
else { // if (order == MSBFIRST) {

support@freenove.com [l

231

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

digitalWrite(dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);

delayMicroseconds (10) ; // 10 times longer then earlier exercise
}
digitalWrite (cPin, HIGH) ;
delayMicroseconds (10) ; // 10 times longer than earlier exercise

int main(void)
{
int i, j, index; //index:current position in array pluseWidth

int moveSpeed = 100; //It works as a delay. The larger, the slower

long lastMove; //Record the last time point of the led move
printf ("Program is starting ...\n”);
wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
index = 0; //Starting from the array index 0
lastMove = millis(); // record the start time
while (1) {
if(millis() - lastMove > moveSpeed) { //speed control
lastMove = millis(); //Record the time point of the move
index++; //move to next
if (index > 15) index = 0; //index to 0
}
for (i=0;i<64;i++) { //The cycle of PWM is 64 cycles
int8 t data = 0;
for (j=0; j<8; j++) { //Calculate the output state
if(i < pluseWidth[index+j]) { //Calculate the LED state according to the
pulse width
data |= 0x01<<j ; //Calculate the data

}
outData(data) ; //Send the data to 74HC595

}

return 0;

We can see that this program is different from the previous one that we had used. We define an array to

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

modulate different PWM pulse widths for LEDs, in doing so different LEDs can emit varied brightness. Starting
from the array index 0O, take an array of 8 adjacent numbers as the LED duty cycle and output it one at a time.
Increasing the starting index number in turn, then it will create a flowing effect.

| | const int pluseWidth(]={0,0,0,0,0,0,0,0,64,32,16,8,4,2 1,0,0,0,0,0,0,0,0 ;

By recording the moving time point to control the speed of the movement of index number, controls the
speed of the Flowing Water Light. Variable moveSpeed saves the time interval of each move, and the greater
the value is, the slower the rate of the flowing movement (the reverse creates faster flowing movement).

if(millis() - lastMove > moveSpeed) { //speed control
lastMove = millis(); //Record the time point of the move
index++; //move to next

if (index > 15) index = 0; //index to 0

Finally, in a “for” loop with i=64, modulate the output pulse width of the PWM square wave. The process, from
the beginning of implementing the for loop to the end, is a PWM cycle. In the loop, there is another for loop
with j=8 and in this loop, it compares the number “i” to the value of the array to determine output high or
low level. Then, the data will be sent to the 74HC595 IC Chip.
for(i=0;i<64;i++) { //The cycle of PW is 64 cycles

int8 t data = 0; //This loop of output data

for (j=0;j<8;j++) { //Calculate the output state of this loop

if(i < pluseWidth[index+j]) { //Calculate the LED state according to the

pulse width
data |= 0x01<<j ; //Calculate the data

}

outData (data) ; //Send the data to 74HC595

—

support@freenove.com [l

233

mailto:support@freenove.com
http://www.freenove.com/

B4 support@freenove.com www.freenove.com [l

Other Components

This kit also includes other common components that can help your ideas come true. Now we will introduce
components not mentioned in the previous section.

Component Knowledge

Toggle switch

Like push button switch, toggle switch is also a kind of switching devices. The difference is that toggle switch

L

3
123 .

is suitable for long-time open or close circuits.

When the lever is moved to the left, pin 1, 2 get conducted, and pin 2, 3 are disconnected from each other;
When the lever is moved to the right, pin 2,3 get conducted, and pin 1,2 are disconnected from each other;

Switch diode

There are several types of diodes. We have used 1N4001 before, which is a common rectifier diode and
commonly used in ac rectifier.
Here is 1N4148, which is a kind of high-speed switching diodes and is characterized by a relatively rapid

switching.
1 1
P 2

For the switching diode, the changing time from conduction to cut off or from cut off to conduction is shorter
than general diode and it is mainly used in electronic computer, pulse and switching circuits.

9V battery cable

A 9V battery cable can connect a 9 V battery, which can supply power for control board.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B vwww.freenove.com D4 support@freenove.com [ES

The installation of 9V battery cable is as follows:

N

Power supply module for breadboard

The following is the power supply module for breadboard. This module can provide the breadboard with
two-channel power supply separately, and each can be configured to 3.3V or 5V separately through a jumper.

Power Switch Power Indicator

Output voltage option 5V OFF 33V 5V OFF 33V 4 Output voltage option }
0000 : 0000

+ -
{ Power output pin \J> ﬁ Power output pin }

We can build a circuit conveniently by using this module. You only need to provide power supply for this

module, and then insert it on the breadboard.

..........................

..........................

..........................

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X support@freenove.com www.freenove.com [l

What's Next?

THANK YOU for participating in this learning experience! If you have completed all of the projects successfully
you can consider yourself a Raspberry Pi Master.

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or
questions about the Tutorial or component contents of this Kit, please feel free to contact us:
support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a
revised version.

If you are interesting in processing, you can study the Processing.pdf in the unzipped folder.

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products
in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective,
innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/

	Getting Started
	Remove the Chips
	Safety and Precautions
	About Freenove
	Copyright

	Contents
	Preface
	Raspberry Pi
	Installing an Operating System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspberry Pi OS
	Automatically Method
	Manually Method
	Write System to Micro SD Card

	Enable ssh and configure WiFi
	Insert SD card

	Getting Started with Raspberry Pi
	Monitor desktop
	Remote desktop & VNC
	MAC OS Remote Desktop
	Windows OS Remote Desktop
	VNC Viewer & VNC
	Enable VNC
	Set Resolution

	Chapter 0 Preparation
	Linux Command
	Shortcut Key

	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code

	Chapter 1 LED
	Project 1.1 Blink
	Component List
	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	Circuit
	Component knowledge
	LED
	Resistor
	Breadboard
	GPIO Extension Board

	Code
	C Code 1.1.1 Blink

	Other Code Editors (Optional)
	nano
	geany

	Freenove Car, Robot and other products for Raspberry Pi

	Chapter 2 Buttons & LEDs
	Project 2.1 Push Button Switch & LED
	Component List
	Component knowledge
	Push Button Switch

	Circuit
	Code
	C Code 2.1.1 ButtonLED

	Project 2.2 MINI Table Lamp
	Debounce a Push Button Switch
	Code
	C Code 2.2.1 Tablelamp

	Chapter 3 LED Bar Graph
	Project 3.1 Flowing Water Light
	Component List
	Component knowledge
	Bar Graph LED

	Circuit
	Code
	C Code 3.1.1 LightWater

	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Component Knowledge
	Analog & Digital
	PWM

	Circuit
	Code
	C Code 4.1.1 BreathingLED

	Chapter 5 RGB LED
	Project 5.1 Multicolored LED
	Component List
	Circuit
	Code
	C Code 5.1.1 Colorful LED

	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistors

	Circuit
	Code
	C Code 6.1.1 Doorbell

	Project 6.2 Alertor
	Code
	C Code 6.2.1 Alertor

	(Important) Chapter 7 ADC
	Project 7.1 Read the Voltage of Potentiometer
	Component List
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	PCF8591
	ADS7830
	I2C communication

	Circuit with ADS7830
	Circuit with PCF8591
	Configure I2C and Install Smbus
	Enable I2C
	Install I2C-Tools

	Code
	C Code 7.1.1 ADC

	Chapter 8 Potentiometer & LED
	Project 8.1 Soft Light
	Component List
	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 8.1.1 Softlight

	Chapter 9 Potentiometer & RGBLED
	Project 9.1 Colorful Light
	Component List
	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 9.1.1 Colorful Softlight

	Chapter 10 Photoresistor & LED
	Project 10.1 NightLamp
	Component List
	Photoresistor

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 10.1.1 Nightlamp

	Chapter 11 Thermistor
	Project 11.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 11.1.1 Thermometer

	Chapter 12 Joystick
	Project 12.1 Joystick
	Component List
	Component knowledge
	Joystick

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 12.1.1 Joystick

	Chapter 13 Motor & Driver
	Project 13.1 Control a DC Motor with a Potentiometer
	Component List
	Component knowledge
	Breadboard Power Module
	DC Motor
	L293D

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 13.1.1 Motor

	Chapter 14 Relay & Motor
	Project 14.1.1 Relay & Motor
	Component List
	Component knowledge
	Relay
	Inductor

	Circuit
	Code
	C Code 14.1.1 Relay

	Chapter 15 Servo
	Project 15.1 Servo Sweep
	Component List
	Component knowledge
	Servo

	Circuit
	Code
	C Code 15.1.1 Sweep

	Chapter 16 Stepper Motor
	Project 16.1 Stepper Motor
	Component List
	Component knowledge
	Stepper Motor
	ULN2003 Stepper Motor driver

	Circuit
	Code
	C Code 16.1.1 SteppingMotor

	Chapter 17 74HC595 & Bar Graph LED
	Project 17.1 Flowing Water Light
	Component List
	Component knowledge
	74HC595

	Circuit
	Code
	C Code 17.1.1 LightWater02

	Chapter 18 74HC595 & 7-Segment Display
	Project 18.1 7-Segment Display
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	C Code 18.1.1 SevenSegmentDisplay

	Project 18.2 4-Digit 7-Segment Display
	Component List
	Component knowledge
	4 Digit 7-Segment Display

	Circuit
	Code
	C Code 18.2.1 StopWatch

	Chapter 19 74HC595 & LED Matrix
	Project 19.1 LED Matrix
	Component List
	Component knowledge
	LED matrix

	Circuit
	Code
	C Code 19.1.1 LEDMatrix

	Chapter 20 LCD1602
	Project 20.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 20.1.1 I2CLCD1602

	Chapter 21 Hygrothermograph DHT11
	Project 21.1 Hygrothermograph
	Component List
	Component knowledge
	Circuit
	Code
	C Code 21.1.1 DHT11

	Chapter 22 Matrix Keypad
	Project 22.1 Matrix Keypad
	Component List
	Component knowledge
	4x4 Matrix Keypad

	Circuit
	Code
	C Code 22.1.1 MatrixKeypad

	Chapter 23 Infrared Motion Sensor
	Project 23.1 PIR Infrared Motion Detector with LED Indicator
	Component List
	Component Knowledge
	Circuit
	Code
	C Code 23.1.1 SenseLED

	Chapter 24 Ultrasonic Ranging
	Project 24.1 Ultrasonic Ranging
	Component List
	Component Knowledge
	Circuit
	Code
	C Code 24.1.1 UltrasonicRanging

	Chapter 25 Attitude Sensor MPU6050
	Project 25.1 Read a MPU6050 Sensor Module
	Component List
	Component knowledge
	MPU6050

	Circuit
	Code
	C Code 25.1.1 MPU6050RAW

	Chapter 26 Soldering a Circuit Board
	Project 26.1 Soldering a Buzzer
	Component list
	Circuit
	Solder the Circuit
	Test the Circuit

	Project 26.2 Soldering a Flowing Water Light
	Component List
	Circuit
	Soldering the Circuit
	Connecting the Circuit
	Code
	C Code 26.2.1 LightWater03

	Other Components
	Component Knowledge
	Toggle switch
	Switch diode
	9V battery cable
	Power supply module for breadboard

	What's Next?

